cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356798 E.g.f. satisfies log(A(x)) = x * (exp(x) - 1) * A(x)^3.

Original entry on oeis.org

1, 0, 2, 3, 88, 425, 13476, 130417, 4543120, 71005041, 2723297860, 60685651961, 2564091428856, 75166650583609, 3496499475113932, 127585829832674865, 6521845096842043936, 284745004488498858209, 15950013722559213419412, 809403234909367349670409
Offset: 0

Views

Author

Seiichi Manyama, Aug 28 2022

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 19; A[_] = 1;
    Do[A[x_] = Exp[x*(Exp[x] - 1)*A[x]^3] + O[x]^(nmax+1) // Normal, {nmax}];
    CoefficientList[A[x], x]*Range[0, nmax]! (* Jean-François Alcover, Mar 05 2024 *)
  • PARI
    a(n) = n!*sum(k=0, n\2, (3*k+1)^(k-1)*stirling(n-k, k, 2)/(n-k)!);
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (3*k+1)^(k-1)*(x*(exp(x)-1))^k/k!)))
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw(3*x*(1-exp(x)))/3)))
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace((lambertw(3*x*(1-exp(x)))/(3*x*(1-exp(x))))^(1/3)))

Formula

a(n) = n! * Sum_{k=0..floor(n/2)} (3*k+1)^(k-1) * Stirling2(n-k,k)/(n-k)!.
E.g.f.: A(x) = Sum_{k>=0} (3*k+1)^(k-1) * (x * (exp(x) - 1))^k / k!.
E.g.f.: A(x) = exp( -LambertW(3 * x * (1 - exp(x)))/3 ).
E.g.f.: A(x) = ( LambertW(3 * x * (1 - exp(x)))/(3 * x * (1 - exp(x))) )^(1/3).