A356799 Table read by antidiagonals: T(n,k) (n >= 2, k >= 1) is the number of regions formed in a regular 2n-gon by straight line segments when connecting the k+1 points that divide each side into k equal parts to the equivalent point on the side diagonally opposite.
1, 4, 13, 9, 24, 25, 16, 55, 48, 41, 25, 66, 105, 70, 61, 36, 121, 144, 171, 108, 85, 49, 126, 233, 220, 253, 140, 113, 64, 211, 288, 381, 312, 351, 192, 145, 81, 204, 409, 450, 565, 448, 465, 234, 181, 100, 325, 480, 671, 636, 785, 608, 595, 300, 221, 121, 300, 633, 760, 997, 924, 1041, 738, 741, 352, 265
Offset: 2
Examples
The table begins: 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, ... 13, 24, 55, 66, 121, 126, 211, 204, 325, 300, 463, 414, ... 25, 48, 105, 144, 233, 288, 409, 480, 633, 720, 905, 1008, ... 41, 70, 171, 220, 381, 450, 671, 760, 1041, 1150, 1491, 1620, ... 61, 108, 253, 312, 565, 636, 997, 1056, 1549, 1596, 2221, 2232, ... 85, 140, 351, 448, 785, 924, 1387, 1568, 2157, 2380, 3095, 3360, ... 113, 192, 465, 608, 1041, 1248, 1841, 2112, 2865, 3200, 4113, 4512, ... 145, 234, 595, 738, 1333, 1512, 2359, 2556, 3673, 3870, 5275, 5454, ... 181, 300, 741, 960, 1661, 1980, 2941, 3360, 4581, 5100, 6581, 7200, ... 221, 352, 903, 1144, 2025, 2376, 3587, 4048, 5589, 6160, 8031, 8712, ... 265, 432, 1081, 1344, 2425, 2784, 4297, 4704, 6697, 7152, 9625, 10080, ... 313, 494, 1275, 1612, 2861, 3354, 5071, 5720, 7905, 8710, 11363, 12324, ... 365, 588, 1485, 1904, 3333, 3948, 5909, 6720, 9213, 10220, 13245, 14448, ... 421, 660, 1711, 2130, 3841, 4410, 6811, 7500, 10621, 11400, 15271, 16110, ... 481, 768, 1953, 2496, 4385, 5184, 7777, 8832, 12129, 13440, 17441, 19008, ... 545, 850, 2211, 2788, 4965, 5814, 8807, 9928, 13737, 15130, 19755, 21420, ... 613, 972, 2485, 3096, 5581, 6444, 9901, 10944, 15445, 16668, 22213, 23544, ... . .
Links
- Scott R. Shannon, Table for n=2..35, k=1..50.
- Scott R. Shannon, Image for T(2,8) = 64.
- Scott R. Shannon, Image for T(3,6) = 126.
- Scott R. Shannon, Image for T(3,7) = 211.
- Scott R. Shannon, Image for T(4,8) = 480.
- Scott R. Shannon, Image for T(4,9) = 633.
- Scott R. Shannon, Image for T(6,12) = 2232.
- Scott R. Shannon, Image for T(6,13) = 3013.
- Scott R. Shannon, Image for T(10,10) = 5100.
- Scott R. Shannon, Image for T(10,11) = 6581.
- Scott R. Shannon, Image for T(18,1) = 613.
- Scott R. Shannon, Image for T(18,2) = 972.
- Scott R. Shannon, Image for T(18,3) = 2485.
- Scott R. Shannon, Image for T(18,4) = 3096.
- Scott R. Shannon, Image for T(18,5) = 5581.
- Scott R. Shannon, Image for T(18,6) = 6444.
Crossrefs
Formula
T(2,k) = k^2.
Conjectured formula for the rows for odd values of k for n>=3:
Conjectured formula for the rows for even values of k for n>=3:
For n mod 3 = 1 or n mod 3 = 2, T(n,k) = A000217(n-1)*k^2 + A265225(n-1)*k = (n^2 - n)*k^2/2 + (floor(n/2) + 1)*n*k.
For n mod 6 = 0, no formula is currently known.
For (n - 3) mod 6 = 0, T(n,k) = A000096(2n-3)*k^2/4 + A005563(n)*k/2 = (2n^2 - 3n)*k^2/4 + (n^2 + 2n)*k/2.
E.g., T(15,k) = 405k^2/4 + 255k/2.
Conjectured formula for the columns for odd values of k for n>=3:
E.g., T(n,9) = 50n^2 - 42n + 1.
Conjectured formula for T(n,2):
T(n,2) = 2*A249127(n) = 2*floor(3n/2)*n, for n>=3.
No formula is current known for the columns for even values of k for k>=4.
Comments