A356810 Decimal expansion of the unique root of the equation x^(x^(((log(x))^(x-1) - 1)/(log(x) - 1))) = x+1 for x in the interval [1,2].
1, 8, 4, 4, 1, 6, 2, 9, 7, 4, 9, 0, 1, 6, 0, 9, 2, 5, 8, 5, 2, 9, 3, 4, 7, 2, 0, 8, 8, 4, 8, 0, 6, 3, 2, 5, 5, 5, 8, 0, 4, 7, 6, 6, 4, 5, 6, 4, 4, 5, 0, 9, 0, 7, 1, 3, 9, 8, 0, 4, 3, 8, 3, 0, 2, 7, 5, 0, 8, 0, 2, 1, 1, 3, 9, 1, 5, 8, 0, 9, 5, 8, 3, 8, 4, 2, 1, 8, 9, 1, 8, 7, 8, 6, 0, 3, 1, 7
Offset: 1
Examples
1.8441629749016...
Links
- Takeji Ueda, Extension of tetration to real and complex heights, arXiv:2105.00247 [math.CA], 2021.
Crossrefs
Cf. A356805.
Programs
-
Mathematica
RealDigits[x /. FindRoot[x^(x^(((Log[x])^(x - 1) - 1)/(Log[x] - 1))) == x + 1, {x,2}, WorkingPrecision -> 100]] [[1]]
-
PARI
solve(x=3/2, 2, x^(x^(((log(x))^(x-1) - 1)/(log(x) - 1))) - x - 1) \\ Michel Marcus, Aug 29 2022
Comments