A356807 Tetranacci sequence beginning with 3, 7, 12, 24.
3, 7, 12, 24, 46, 89, 171, 330, 636, 1226, 2363, 4555, 8780, 16924, 32622, 62881, 121207, 233634, 450344, 868066, 1673251, 3225295, 6216956, 11983568, 23099070, 44524889, 85824483, 165432010, 318880452, 614661834, 1184798779, 2283773075, 4402114140, 8485347828
Offset: 1
Examples
Here is one of the a(6) = 89 ways to tile this figure of length 6 with tiles of length <= 4, this one using three squares, one domino, and one tromino: ___ | |_|_______ |_|_____|_|_|
Links
- Paolo Xausa, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,1,1,1).
Programs
-
Mathematica
LinearRecurrence[{1, 1, 1, 1}, {3, 7, 12, 24}, 50] (* Paolo Xausa, Aug 30 2024 *)
Formula
a(n) = a(n-1) + a(n-2) + a(n-3) + a(n-4).
a(n) = 5*b(n+2) + 2*b(n+1) - 2*b(n-2) for b(n) = A000078(n) the tetranacci numbers.
a(n) = L(n+2) - F(n-2) + Sum_{k=0..n-3} a(k)*F(n-k-1), for L(n) and F(n) the Lucas and Fibonacci numbers.
G.f.: x*(-2*x^3 - 2*x^2 - 4*x - 3)/(x^4 + x^3 + x^2 + x - 1). - Chai Wah Wu, Aug 30 2022
Comments