cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356827 Expansion of e.g.f. exp(x * exp(3*x)).

Original entry on oeis.org

1, 1, 7, 46, 361, 3436, 37729, 463366, 6280369, 93015352, 1491337441, 25684077706, 472217487625, 9221588527204, 190441412508481, 4143470377262806, 94663498086222049, 2264440394856702832, 56570146384760433217, 1472545685988162638722
Offset: 0

Views

Author

Seiichi Manyama, Aug 29 2022

Keywords

Crossrefs

Programs

  • Maple
    A356827 := proc(n)
        add((3*k)^(n-k) * binomial(n,k),k=0..n) ;
    end proc:
    seq(A356827(n),n=0..70) ; # R. J. Mathar, Dec 04 2023
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(x*exp(3*x))))
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, x^k/(1-3*k*x)^(k+1)))
    
  • PARI
    a(n) = sum(k=0, n, (3*k)^(n-k)*binomial(n, k));

Formula

G.f.: Sum_{k>=0} x^k / (1 - 3*k*x)^(k+1).
a(n) = Sum_{k=0..n} (3*k)^(n-k) * binomial(n,k).