cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A357174 a(n) = n! * Sum_{k=0..floor(n/3)} (n - 3*k)^n/(n - 3*k)!.

Original entry on oeis.org

1, 1, 4, 27, 280, 5045, 134136, 4269223, 153188176, 6657007113, 371930499280, 25072409219891, 1872319689314856, 154583203638018493, 14784597239881491400, 1641532369038107170815, 201617558936011146124576, 26755058016106471234608017
Offset: 0

Views

Author

Seiichi Manyama, Sep 16 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := n! * Sum[(n - 3*k)^n/(n - 3*k)!, {k, 0, Floor[n/3]} ]; a[0] = 1; Array[a, 18, 0] (* Amiram Eldar, Sep 16 2022 *)
  • PARI
    a(n) = n!*sum(k=0, n\3, (n-3*k)^n/(n-3*k)!);
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (k*x)^k/(k!*(1-(k*x)^3)))))

Formula

E.g.f.: Sum_{k>=0} (k * x)^k / (k! * (1 - (k * x)^3)).

A362604 Expansion of e.g.f. 1/(1 + LambertW(-x * exp(x^2))).

Original entry on oeis.org

1, 1, 4, 33, 352, 4805, 80256, 1582693, 36001792, 927974601, 26729943040, 850921057481, 29666297020416, 1124166449205709, 46005243970846720, 2022121401647311245, 95008417631810093056, 4751844218849365365137, 252063937292253895065600
Offset: 0

Views

Author

Seiichi Manyama, Apr 30 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(1+lambertw(-x*exp(x^2)))))

Formula

a(n) = n! * Sum_{k=0..floor(n/2)} (n-2*k)^(n-k) / (k! * (n-2*k)!).
Showing 1-2 of 2 results.