A356843 Numbers k such that the k-th composition in standard order covers an interval of positive integers (gapless) but contains no 1's.
2, 4, 8, 10, 16, 18, 20, 32, 36, 42, 64, 68, 72, 74, 82, 84, 128, 136, 146, 148, 164, 170, 256, 264, 272, 274, 276, 290, 292, 296, 298, 324, 328, 330, 338, 340, 512, 528, 548, 580, 584, 586, 594, 596, 658, 660, 676, 682, 1024, 1040, 1056, 1092, 1096, 1098
Offset: 1
Keywords
Examples
The terms together with their corresponding standard compositions begin: 2: (2) 4: (3) 8: (4) 10: (2,2) 16: (5) 18: (3,2) 20: (2,3) 32: (6) 36: (3,3) 42: (2,2,2) 64: (7) 68: (4,3) 72: (3,4) 74: (3,2,2) 82: (2,3,2) 84: (2,2,3)
Links
Crossrefs
See link for sequences related to standard compositions.
A subset of A022340.
These compositions are counted by A251729.
The unordered version (using Heinz numbers of partitions) is A356845.
A333217 ranks complete compositions.
A356233 counts factorizations into gapless numbers.
A356844 ranks compositions with at least one 1.
Programs
-
Mathematica
nogapQ[m_]:=Or[m=={},Union[m]==Range[Min[m],Max[m]]]; stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse; Select[Range[100],!MemberQ[stc[#],1]&&nogapQ[stc[#]]&]
Comments