cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356862 Numbers with a unique largest prime exponent.

Original entry on oeis.org

2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 16, 17, 18, 19, 20, 23, 24, 25, 27, 28, 29, 31, 32, 37, 40, 41, 43, 44, 45, 47, 48, 49, 50, 52, 53, 54, 56, 59, 60, 61, 63, 64, 67, 68, 71, 72, 73, 75, 76, 79, 80, 81, 83, 84, 88, 89, 90, 92, 96, 97, 98, 99, 101, 103, 104
Offset: 1

Views

Author

Jens Ahlström, Sep 01 2022

Keywords

Comments

If the prime factorization of k has a unique largest exponent, then k is a term.
Numbers whose multiset of prime factors (with multiplicity) has a unique mode. - Gus Wiseman, May 12 2023
Disjoint union of A246655 and A376250. The asymptotic density of this sequence, 0.3660366524547281232052..., is equal to the density of A376250 since the prime powers have a zero density. - Amiram Eldar, Sep 17 2024

Examples

			Prime powers (A246655) are in the sequence, since they have only one prime exponent in their prime factorization, hence a unique largest exponent.
144 is in the sequence, since 144 = 2^4 * 3^2 and there is the unique largest exponent 4.
225 is not in the sequence, since 225 = 3^2 * 5^2 and the largest exponent 2 is not unique, but rather it is the exponent of both the prime factor 3 and of the prime factor 5.
		

Crossrefs

Subsequence of A319161 (which has additional terms 1, 180, 252, 300, 396, 450, 468, ...).
For factors instead of exponents we have A102750.
For smallest instead of largest we have A359178, counted by A362610.
The complement is A362605, counted by A362607.
The complement for co-mode is A362606, counted by A362609.
Partitions of this type are counted by A362608.
These are the positions of 1's in A362611, for co-modes A362613.
A001221 is the number of prime exponents, sum A001222.
A027746 lists prime factors, A112798 indices, A124010 exponents.
A362614 counts partitions by number of modes, A362615 co-modes.

Programs

  • Mathematica
    Select[Range[2, 100], Count[(e = FactorInteger[#][[;; , 2]]), Max[e]] == 1 &] (* Amiram Eldar, Sep 01 2022 *)
  • PARI
    isok(k) = if (k>1, my(f=factor(k), m=vecmax(f[,2]), w=select(x->(f[x,2] == m), [1..#f~])); #w == 1); \\ Michel Marcus, Sep 01 2022
  • Python
    from sympy import factorint
    from collections import Counter
    def ok(k):
        c = Counter(factorint(k)).most_common(2)
        return not (len(c) > 1 and c[0][1] == c[1][1])
    print([k for k in range(2, 105) if ok(k)])
    
  • Python
    from sympy import factorint
    from itertools import count, islice
    def A356862_gen(startvalue=2): # generator of terms >= startvalue
        return filter(lambda n:len(f:=sorted(factorint(n).values(),reverse=True))==1 or f[0]!=f[1],count(max(startvalue,2)))
    A356862_list = list(islice(A356862_gen(),30)) # Chai Wah Wu, Sep 10 2022