A356862 Numbers with a unique largest prime exponent.
2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 16, 17, 18, 19, 20, 23, 24, 25, 27, 28, 29, 31, 32, 37, 40, 41, 43, 44, 45, 47, 48, 49, 50, 52, 53, 54, 56, 59, 60, 61, 63, 64, 67, 68, 71, 72, 73, 75, 76, 79, 80, 81, 83, 84, 88, 89, 90, 92, 96, 97, 98, 99, 101, 103, 104
Offset: 1
Examples
Prime powers (A246655) are in the sequence, since they have only one prime exponent in their prime factorization, hence a unique largest exponent. 144 is in the sequence, since 144 = 2^4 * 3^2 and there is the unique largest exponent 4. 225 is not in the sequence, since 225 = 3^2 * 5^2 and the largest exponent 2 is not unique, but rather it is the exponent of both the prime factor 3 and of the prime factor 5.
Links
- Jens Ahlström, Table of n, a(n) for n = 1..10000
- Wikipedia, Mode (statistics).
Crossrefs
Programs
-
Mathematica
Select[Range[2, 100], Count[(e = FactorInteger[#][[;; , 2]]), Max[e]] == 1 &] (* Amiram Eldar, Sep 01 2022 *)
-
PARI
isok(k) = if (k>1, my(f=factor(k), m=vecmax(f[,2]), w=select(x->(f[x,2] == m), [1..#f~])); #w == 1); \\ Michel Marcus, Sep 01 2022
-
Python
from sympy import factorint from collections import Counter def ok(k): c = Counter(factorint(k)).most_common(2) return not (len(c) > 1 and c[0][1] == c[1][1]) print([k for k in range(2, 105) if ok(k)])
-
Python
from sympy import factorint from itertools import count, islice def A356862_gen(startvalue=2): # generator of terms >= startvalue return filter(lambda n:len(f:=sorted(factorint(n).values(),reverse=True))==1 or f[0]!=f[1],count(max(startvalue,2))) A356862_list = list(islice(A356862_gen(),30)) # Chai Wah Wu, Sep 10 2022
Comments