A356898 a(n) is the number of trailing 1's in the maximal tribonacci representation of n (A352103).
0, 1, 0, 2, 0, 1, 0, 3, 1, 0, 2, 0, 1, 0, 4, 0, 2, 0, 1, 0, 3, 1, 0, 2, 0, 1, 0, 5, 0, 1, 0, 3, 1, 0, 2, 0, 1, 0, 4, 0, 2, 0, 1, 0, 3, 1, 0, 2, 0, 1, 0, 6, 1, 0, 2, 0, 1, 0, 4, 0, 2, 0, 1, 0, 3, 1, 0, 2, 0, 1, 0, 5, 0, 1, 0, 3, 1, 0, 2, 0, 1, 0, 4, 0, 2, 0, 1
Offset: 0
Examples
n a(n) A352103(n) - ---- ---------- 0 0 0 1 1 1 2 0 10 3 2 11 4 0 100 5 1 101 6 0 110 7 3 111 8 1 1001 9 0 1010
Links
- Amiram Eldar, Table of n, a(n) for n = 0..10000
Programs
-
Mathematica
t[1] = 1; t[2] = 2; t[3] = 4; t[n_] := t[n] = t[n - 1] + t[n - 2] + t[n - 3]; trib[n_] := Module[{s = {}, m = n, k}, While[m > 0, k = 1; While[t[k] <= m, k++]; k--; AppendTo[s, k]; m -= t[k]; k = 1]; IntegerDigits[Total[2^(s - 1)], 2]]; f[v_] := Module[{m = Length[v], k}, k = m; While[v[[k]] == 1, k--]; m - k]; a[n_] := Module[{v = trib[n]}, nv = Length[v]; i = 1; While[i <= nv - 3, If[v[[i ;; i + 3]] == {1, 0, 0, 0}, v[[i ;; i + 3]] = {0, 1, 1, 1}; If[i > 3, i -= 4]]; i++]; i = Position[v, _?(# > 0 &)]; If[i == {}, 0, f[v[[i[[1, 1]] ;; -1]]], 10]]; Array[a, 100, 0]
Comments