cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A356960 E.g.f. satisfies: A(x) = 1/(1 - x * A(x)^3)^A(x).

Original entry on oeis.org

1, 1, 10, 207, 6620, 288040, 15891234, 1063219640, 83665143176, 7572321823536, 775010639465040, 88510236140283672, 11158965455394331992, 1539441941412714237912, 230675631266761375815288, 37309025609545822539225240, 6478248637390494598048444224
Offset: 0

Views

Author

Seiichi Manyama, Sep 07 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[(3*n + k + 1)^(k - 1)*Abs[StirlingS1[n, k]], {k, 0, n}] (* Sidney Cadot, Jan 05 2023 *)
  • PARI
    a(n) = sum(k=0, n, (3*n+k+1)^(k-1)*abs(stirling(n, k, 1)));

Formula

a(n) = Sum_{k=0..n} (3*n+k+1)^(k-1) * |Stirling1(n,k)|.

A356972 E.g.f. satisfies log(A(x)) = (exp(x * A(x)^2) - 1) * A(x).

Original entry on oeis.org

1, 1, 8, 128, 3139, 104382, 4393590, 224045271, 13428576766, 925335827928, 72082558060889, 6264277731652096, 600873473776204782, 63059026039778220285, 7187299097301622432156, 884141943373486896560252, 116756337165196381259759707, 16474480747756013055963484442
Offset: 0

Views

Author

Seiichi Manyama, Sep 07 2022

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, (2*n+k+1)^(k-1)*stirling(n, k, 2));

Formula

a(n) = Sum_{k=0..n} (2*n+k+1)^(k-1) * Stirling2(n,k).
Showing 1-2 of 2 results.