A356920 Number of partitions of n into 6 parts that divide n.
0, 0, 0, 0, 0, 1, 0, 1, 0, 2, 0, 8, 0, 1, 0, 4, 0, 8, 0, 8, 0, 0, 0, 33, 0, 0, 0, 6, 0, 27, 0, 5, 0, 0, 0, 44, 0, 0, 0, 21, 0, 16, 0, 1, 0, 0, 0, 61, 0, 3, 0, 1, 0, 13, 0, 11, 0, 0, 0, 124, 0, 0, 0, 5, 0, 6, 0, 0, 0, 8, 0, 104, 0, 0, 0, 0, 0, 5, 0, 31, 0, 0, 0, 77, 0, 0
Offset: 1
Keywords
Examples
a(12) = 8; there are 8 ways to write 12 as the sum of 6 divisors of 12: 6+2+1+1+1+1 = 4+4+1+1+1+1 = 4+3+2+1+1+1 = 4+2+2+2+1+1 = 3+3+3+1+1+1 = 3+3+2+2+1+1 = 3+2+2+2+2+1 = 2+2+2+2+2+2.
Crossrefs
Cf. A356609.
Formula
a(n) = Sum_{m=1..floor(n/6)} Sum_{l=m..floor((n-m)/5)} Sum_{k=l..floor((n-l-m)/4)} Sum_{j=k..floor((n-k-l-m)/3)} Sum_{i=j..floor((n-j-k-l-m)/2)} c(n/m) * c(n/l) * c(n/k) * c(n/j) * c(n/i) * c(n/(n-i-j-k-l-m)), where c(n) = 1 - ceiling(n) + floor(n).