A356936 Number of multiset partitions of the multiset of prime indices of n into intervals. Number of factorizations of n into members of A073485.
1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 1, 2, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1
Offset: 1
Keywords
Examples
The a(n) multiset partitions for n = 6, 30, 36, 90, 180: {12} {123} {12}{12} {12}{23} {12}{123} {1}{2} {1}{23} {1}{2}{12} {2}{123} {1}{12}{23} {3}{12} {1}{1}{2}{2} {1}{2}{23} {1}{2}{123} {1}{2}{3} {2}{3}{12} {3}{12}{12} {1}{2}{2}{3} {1}{1}{2}{23} {1}{2}{3}{12} {1}{1}{2}{2}{3} The a(n) factorizations for n = 6, 30, 36, 90, 180: (6) (30) (6*6) (3*30) (6*30) (2*3) (5*6) (2*3*6) (6*15) (5*6*6) (2*15) (2*2*3*3) (3*5*6) (2*3*30) (2*3*5) (2*3*15) (2*6*15) (2*3*3*5) (2*3*5*6) (2*2*3*15) (2*2*3*3*5)
Crossrefs
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; chQ[y_]:=Or[Length[y]<=1,Union[Differences[y]]=={1}]; Table[Length[Select[facs[n],And@@chQ/@primeMS/@#&]],{n,100}]
Comments