A356937 Number of multisets of intervals whose multiset union is of size n and covers an initial interval of positive integers.
1, 1, 3, 9, 29, 94, 310, 1026, 3411, 11360, 37886, 126442, 422203, 1410189, 4711039, 15740098, 52593430, 175742438, 587266782, 1962469721, 6558071499, 21915580437, 73237274083, 244744474601, 817889464220, 2733235019732, 9133973730633, 30524096110942, 102006076541264
Offset: 0
Keywords
Examples
The a(1) = 1 through a(3) = 9 set multipartitions (multisets of sets): {{1}} {{1,2}} {{1,2,3}} {{1},{1}} {{1},{1,2}} {{1},{2}} {{1},{2,3}} {{2},{1,2}} {{3},{1,2}} {{1},{1},{1}} {{1},{1},{2}} {{1},{2},{2}} {{1},{2},{3}}
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..200
- Gus Wiseman, Counting and ranking classes of multiset partitions related to gapless multisets
Crossrefs
A011782 counts multisets covering an initial interval.
Programs
-
Mathematica
allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]]; sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; chQ[y_]:=Or[Length[y]<=1,Union[Differences[y]]=={1}]; Table[Length[Select[Join@@mps/@allnorm[n],And@@chQ/@#&]],{n,0,5}]
-
PARI
EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)} R(n,k) = {EulerT(vector(n, j, max(0, 1+k-j)))} seq(n) = {my(A=1+O(y*y^n)); for(k = 1, n, A += x^k*(1 + y*Ser(R(n,k), y) - polcoef(1/(1 - x*A) + O(x^(k+2)), k+1))); Vec(subst(A,x,1))} \\ Andrew Howroyd, Jan 01 2023
Extensions
Terms a(10) and beyond from Andrew Howroyd, Jan 01 2023
Comments