cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356937 Number of multisets of intervals whose multiset union is of size n and covers an initial interval of positive integers.

Original entry on oeis.org

1, 1, 3, 9, 29, 94, 310, 1026, 3411, 11360, 37886, 126442, 422203, 1410189, 4711039, 15740098, 52593430, 175742438, 587266782, 1962469721, 6558071499, 21915580437, 73237274083, 244744474601, 817889464220, 2733235019732, 9133973730633, 30524096110942, 102006076541264
Offset: 0

Views

Author

Gus Wiseman, Sep 08 2022

Keywords

Comments

An interval such as {3,4,5} is a set with all differences of adjacent elements equal to 1.

Examples

			The a(1) = 1 through a(3) = 9 set multipartitions (multisets of sets):
  {{1}}  {{1,2}}    {{1,2,3}}
         {{1},{1}}  {{1},{1,2}}
         {{1},{2}}  {{1},{2,3}}
                    {{2},{1,2}}
                    {{3},{1,2}}
                    {{1},{1},{1}}
                    {{1},{1},{2}}
                    {{1},{2},{2}}
                    {{1},{2},{3}}
		

Crossrefs

A000041 counts integer partitions, strict A000009.
A000670 counts patterns, ranked by A333217, necklace A019536.
A011782 counts multisets covering an initial interval.
Intervals are counted by A000012, A001227, ranked by A073485.
Other conditions: A034691, A116540, A255906, A356933, A356942.
Other types: A107742, A356936, A356938, A356939.

Programs

  • Mathematica
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    chQ[y_]:=Or[Length[y]<=1,Union[Differences[y]]=={1}];
    Table[Length[Select[Join@@mps/@allnorm[n],And@@chQ/@#&]],{n,0,5}]
  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    R(n,k) = {EulerT(vector(n, j, max(0, 1+k-j)))}
    seq(n) = {my(A=1+O(y*y^n)); for(k = 1, n, A += x^k*(1 + y*Ser(R(n,k), y) - polcoef(1/(1 - x*A) + O(x^(k+2)), k+1))); Vec(subst(A,x,1))} \\ Andrew Howroyd, Jan 01 2023

Extensions

Terms a(10) and beyond from Andrew Howroyd, Jan 01 2023