A356938 Number of multisets of intervals whose multiset union is of size n and covers an initial interval of positive integers with weakly decreasing multiplicities.
1, 1, 3, 7, 18, 41, 101, 228, 538, 1209
Offset: 0
Examples
The a(1) = 1 through a(4) = 18 multiset partitions: {{1}} {{1,2}} {{1,2,3}} {{1,2,3,4}} {{1},{1}} {{1},{1,2}} {{1},{1,2,3}} {{1},{2}} {{1},{2,3}} {{1,2},{1,2}} {{3},{1,2}} {{1},{2,3,4}} {{1},{1},{1}} {{1,2},{3,4}} {{1},{1},{2}} {{4},{1,2,3}} {{1},{2},{3}} {{1},{1},{1,2}} {{1},{1},{2,3}} {{1},{2},{1,2}} {{1},{2},{3,4}} {{1},{3},{1,2}} {{1},{4},{2,3}} {{3},{4},{1,2}} {{1},{1},{1},{1}} {{1},{1},{1},{2}} {{1},{1},{2},{2}} {{1},{1},{2},{3}} {{1},{2},{3},{4}}
Crossrefs
A011782 counts multisets covering an initial interval.
Programs
-
Mathematica
strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n]; sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; chQ[y_]:=Or[Length[y]<=1,Union[Differences[y]]=={1}]; Table[Length[Select[Join@@mps/@strnorm[n],And@@chQ/@#&]],{n,0,5}]
Comments