A356941 Number of multiset partitions of integer partitions of n such that all blocks are gapless.
1, 1, 3, 6, 13, 24, 49, 88, 166, 297, 534, 932, 1635, 2796, 4782, 8060, 13521, 22438, 37080, 60717, 98979, 160216, 258115, 413382, 659177, 1045636, 1651891, 2597849, 4069708, 6349677, 9871554, 15290322, 23604794, 36318256, 55705321, 85177643, 129865495
Offset: 0
Keywords
Examples
The a(1) = 1 through a(4) = 13 multiset partitions: {{1}} {{2}} {{3}} {{4}} {{1,1}} {{1,2}} {{2,2}} {{1},{1}} {{1,1,1}} {{1,1,2}} {{1},{2}} {{1},{3}} {{1},{1,1}} {{2},{2}} {{1},{1},{1}} {{1,1,1,1}} {{1},{1,2}} {{2},{1,1}} {{1},{1,1,1}} {{1,1},{1,1}} {{1},{1},{2}} {{1},{1},{1,1}} {{1},{1},{1},{1}}
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1000
- Gus Wiseman, Counting and ranking classes of multiset partitions related to gapless multisets
Programs
-
Mathematica
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; nogapQ[m_]:=Or[m=={},Union[m]==Range[Min[m],Max[m]]]; Table[Length[Select[Join@@mps/@IntegerPartitions[n],And@@nogapQ/@#&]],{n,0,5}]
-
PARI
\\ Here G(n) gives A034296 as vector G(N) = Vec(sum(n=1, N, x^n/(1-x^n) * prod(k=1, n-1, 1+x^k+O(x*x^(N-n))) )); seq(n) = {my(u=G(n)); Vec(1/prod(k=1, n-1, (1 - x^k + O(x*x^n))^u[k])) } \\ Andrew Howroyd, Dec 30 2022
Formula
G.f.: 1/Product_{k>=1} (1 - x^k)^A034296(k). - Andrew Howroyd, Dec 30 2022
Extensions
Terms a(11) and beyond from Andrew Howroyd, Dec 30 2022
Comments