cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356941 Number of multiset partitions of integer partitions of n such that all blocks are gapless.

Original entry on oeis.org

1, 1, 3, 6, 13, 24, 49, 88, 166, 297, 534, 932, 1635, 2796, 4782, 8060, 13521, 22438, 37080, 60717, 98979, 160216, 258115, 413382, 659177, 1045636, 1651891, 2597849, 4069708, 6349677, 9871554, 15290322, 23604794, 36318256, 55705321, 85177643, 129865495
Offset: 0

Views

Author

Gus Wiseman, Sep 11 2022

Keywords

Comments

A multiset is gapless if it covers an interval of positive integers. For example, {2,3,3,4} is gapless but {1,1,3,3} is not.

Examples

			The a(1) = 1 through a(4) = 13 multiset partitions:
  {{1}}  {{2}}      {{3}}          {{4}}
         {{1,1}}    {{1,2}}        {{2,2}}
         {{1},{1}}  {{1,1,1}}      {{1,1,2}}
                    {{1},{2}}      {{1},{3}}
                    {{1},{1,1}}    {{2},{2}}
                    {{1},{1},{1}}  {{1,1,1,1}}
                                   {{1},{1,2}}
                                   {{2},{1,1}}
                                   {{1},{1,1,1}}
                                   {{1,1},{1,1}}
                                   {{1},{1},{2}}
                                   {{1},{1},{1,1}}
                                   {{1},{1},{1},{1}}
		

Crossrefs

A000041 counts integer partitions, strict A000009.
A000670 counts patterns, ranked by A333217, necklace A019536.
A001055 counts factorizations.
A011782 counts multisets covering an initial interval.
A356069 counts gapless divisors, initial A356224 (complement A356225).
Gapless multisets are counted by A034296, ranked by A073491.
Other types: A356233, A356942, A356943, A356944.
Other conditions: A001970, A006171, A007294, A089259, A107742, A356932.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    nogapQ[m_]:=Or[m=={},Union[m]==Range[Min[m],Max[m]]];
    Table[Length[Select[Join@@mps/@IntegerPartitions[n],And@@nogapQ/@#&]],{n,0,5}]
  • PARI
    \\ Here G(n) gives A034296 as vector
    G(N) = Vec(sum(n=1, N, x^n/(1-x^n) * prod(k=1, n-1, 1+x^k+O(x*x^(N-n))) ));
    seq(n) = {my(u=G(n)); Vec(1/prod(k=1, n-1, (1 - x^k + O(x*x^n))^u[k])) } \\ Andrew Howroyd, Dec 30 2022

Formula

G.f.: 1/Product_{k>=1} (1 - x^k)^A034296(k). - Andrew Howroyd, Dec 30 2022

Extensions

Terms a(11) and beyond from Andrew Howroyd, Dec 30 2022