A356942 Number of multisets of gapless multisets whose multiset union is a size-n multiset covering an initial interval.
1, 1, 4, 15, 61, 249, 1040, 4363, 18424, 78014, 331099, 1407080, 5985505, 25477399, 108493103, 462147381, 1969025286, 8390475609, 35757524184, 152398429323, 649555719160, 2768653475487, 11801369554033, 50304231997727, 214428538858889, 914039405714237
Offset: 0
Keywords
Examples
The a(1) = 1 through a(3) = 14 multiset partitions: {{1}} {{1,1}} {{1,1,1}} {{1,2}} {{1,1,2}} {{1},{1}} {{1,2,2}} {{1},{2}} {{1,2,3}} {{1},{1,1}} {{1},{1,2}} {{1},{2,2}} {{1},{2,3}} {{2},{1,1}} {{2},{1,2}} {{3},{1,2}} {{1},{1},{1}} {{1},{1},{2}} {{1},{2},{2}} {{1},{2},{3}}
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..200
- Gus Wiseman, Counting and ranking classes of multiset partitions related to gapless multisets
Crossrefs
A011782 counts multisets covering an initial interval.
Programs
-
Mathematica
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]]; nogapQ[m_]:=Or[m=={},Union[m]==Range[Min[m],Max[m]]]; Table[Length[Select[Join@@mps/@allnorm[n],And@@nogapQ/@#&]],{n,0,5}]
-
PARI
EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)} R(n,k) = {EulerT(vector(n, j, sum(i=1, min(k, j), (k-i+1)*binomial(j-1, i-1))))} seq(n) = {my(A=1+O(y*y^n)); for(k = 1, n, A += x^k*(1 + y*Ser(R(n,k), y) - polcoef(1/(1 - x*A) + O(x^(k+2)), k+1))); Vec(subst(A,x,1))} \\ Andrew Howroyd, Jan 01 2023
Extensions
Terms a(9) and beyond from Andrew Howroyd, Jan 01 2023
Comments