cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356952 E.g.f. satisfies log(A(x)) = x^3/6 * (exp(x) - 1) * A(x).

Original entry on oeis.org

1, 0, 0, 0, 4, 10, 20, 35, 1736, 15204, 88320, 415965, 7632460, 121801966, 1368227224, 12184672955, 176889193040, 3490851044360, 59703361471296, 837948141904569, 13407228541467540, 283596013866706450, 6226093732482731800, 121326684752194084471
Offset: 0

Views

Author

Seiichi Manyama, Sep 06 2022

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 23; A[_] = 1;
    Do[A[x_] = Exp[x^3/6*(Exp[x] - 1)*A[x]] + O[x]^(nmax+1) // Normal, {nmax}];
    CoefficientList[A[x], x]*Range[0, nmax]! (* Jean-François Alcover, Mar 05 2024 *)
  • PARI
    a(n) = n!*sum(k=0, n\4, (k+1)^(k-1)*stirling(n-3*k, k, 2)/(6^k*(n-3*k)!));
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (k+1)^(k-1)*(x^3/6*(exp(x)-1))^k/k!)))
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw(x^3/6*(1-exp(x))))))
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(lambertw(x^3/6*(1-exp(x)))/(x^3/6*(1-exp(x)))))

Formula

a(n) = n! * Sum_{k=0..floor(n/4)} (k+1)^(k-1) * Stirling2(n-3*k,k)/(6^k * (n-3*k)!).
E.g.f.: A(x) = Sum_{k>=0} (k+1)^(k-1) * (x^3/6 * (exp(x) - 1))^k / k!.
E.g.f.: A(x) = exp( -LambertW(x^3/6 * (1 - exp(x))) ).
E.g.f.: A(x) = LambertW(x^3/6 * (1 - exp(x)))/(x^3/6 * (1 - exp(x))).