A356954 Number of multisets of multisets, each covering an initial interval, whose multiset union is of size n and has weakly decreasing multiplicities.
1, 1, 3, 6, 15, 30, 71, 145, 325, 680
Offset: 0
Examples
The a(1) = 1 through a(4) = 15 multiset partitions: {{1}} {{1,1}} {{1,1,1}} {{1,1,1,1}} {{1,2}} {{1,1,2}} {{1,1,1,2}} {{1},{1}} {{1,2,3}} {{1,1,2,2}} {{1},{1,1}} {{1,1,2,3}} {{1},{1,2}} {{1,2,3,4}} {{1},{1},{1}} {{1},{1,1,1}} {{1,1},{1,1}} {{1},{1,1,2}} {{1,1},{1,2}} {{1},{1,2,2}} {{1},{1,2,3}} {{1,2},{1,2}} {{1},{1},{1,1}} {{1},{1},{1,2}} {{1},{1},{1},{1}}
Crossrefs
Programs
-
Mathematica
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; normQ[m_]:=Or[m=={},Union[m]==Range[Max[m]]]; strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n]; Table[Length[Select[Join@@mps/@strnorm[n],And@@normQ/@#&]],{n,0,5}]