A356958 Triangle read by rows: if n has weakly increasing prime indices (a,b,...,y,z) then row n is (b-a+1, ..., y-a+1, z-a+1).
1, 2, 1, 1, 1, 3, 1, 2, 4, 2, 1, 1, 1, 2, 2, 1, 3, 3, 5, 1, 1, 2, 1, 6, 1, 1, 1, 4, 2, 3, 1, 1, 1, 1, 4, 7, 2, 1, 2, 2, 8, 5, 1, 1, 3, 2, 4, 1, 5, 1, 2, 9, 1, 1, 1, 2, 1, 3, 3, 6, 1, 6, 2, 2, 2, 3, 1, 1, 4, 7, 10, 1, 2, 3, 11, 1, 3, 1, 1, 1, 1, 1, 4, 2, 5
Offset: 1
Examples
Triangle begins: 1: . 2: . 3: . 4: 1 5: . 6: 2 7: . 8: 1 1 9: 1 10: 3 11: . 12: 1 2 13: . 14: 4 15: 2 16: 1 1 1 For example, the prime indices of 315 are (2,2,3,4), so row 315 is (2,3,4) - 2 + 1 = (1,2,3).
Crossrefs
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; Table[If[n==1,{},1-First[primeMS[n]]+Rest[primeMS[n]]],{n,100}]
Comments