A356960 E.g.f. satisfies: A(x) = 1/(1 - x * A(x)^3)^A(x).
1, 1, 10, 207, 6620, 288040, 15891234, 1063219640, 83665143176, 7572321823536, 775010639465040, 88510236140283672, 11158965455394331992, 1539441941412714237912, 230675631266761375815288, 37309025609545822539225240, 6478248637390494598048444224
Offset: 0
Keywords
Links
- Sidney Cadot, Table of n, a(n) for n = 0..100
Programs
-
Mathematica
a[n_] := Sum[(3*n + k + 1)^(k - 1)*Abs[StirlingS1[n, k]], {k, 0, n}] (* Sidney Cadot, Jan 05 2023 *)
-
PARI
a(n) = sum(k=0, n, (3*n+k+1)^(k-1)*abs(stirling(n, k, 1)));
Formula
a(n) = Sum_{k=0..n} (3*n+k+1)^(k-1) * |Stirling1(n,k)|.