A356981 Numbers k such that the sum of distinct digits of k equals the sum of the prime divisors of k.
2, 3, 5, 7, 84, 144, 160, 250, 343, 468, 735, 936, 975, 1125, 1215, 1375, 1408, 1600, 1694, 1872, 2401, 2500, 2646, 2880, 3920, 4913, 6084, 6318, 6860, 7296, 7695, 8624, 8704, 8788, 9126, 10125, 10240, 10816, 11264, 12672, 12675, 14641, 14896, 16000
Offset: 1
Examples
144 = 2^4*3^2 and 1+4=2+3. Thus, 144 is in this sequence.
Programs
-
Mathematica
Select[Range[2, 20000],Total[Union[IntegerDigits[#]]] == Total[Transpose[FactorInteger[#]][[1]]] &]
-
PARI
isok(k) = vecsum(Set(digits(k))) == vecsum(factor(k)[, 1]); \\ Michel Marcus, Sep 12 2022
-
Python
from itertools import count, islice from sympy import primefactors def A356981_gen(startvalue=1): # generator of terms >= startvalue return filter(lambda k:sum(int(d) for d in set(str(k)))==sum(primefactors(k)), count(max(startvalue,1))) A356981_list = list(islice(A356981_gen(),30)) # Chai Wah Wu, Sep 12 2022
Comments