cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356981 Numbers k such that the sum of distinct digits of k equals the sum of the prime divisors of k.

Original entry on oeis.org

2, 3, 5, 7, 84, 144, 160, 250, 343, 468, 735, 936, 975, 1125, 1215, 1375, 1408, 1600, 1694, 1872, 2401, 2500, 2646, 2880, 3920, 4913, 6084, 6318, 6860, 7296, 7695, 8624, 8704, 8788, 9126, 10125, 10240, 10816, 11264, 12672, 12675, 14641, 14896, 16000
Offset: 1

Views

Author

Tanya Khovanova, Sep 09 2022

Keywords

Comments

Similar to A070275, where distinctness of digits is not required.

Examples

			144 = 2^4*3^2 and 1+4=2+3. Thus, 144 is in this sequence.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[2, 20000],Total[Union[IntegerDigits[#]]] ==  Total[Transpose[FactorInteger[#]][[1]]] &]
  • PARI
    isok(k) = vecsum(Set(digits(k))) == vecsum(factor(k)[, 1]); \\ Michel Marcus, Sep 12 2022
  • Python
    from itertools import count, islice
    from sympy import primefactors
    def A356981_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda k:sum(int(d) for d in set(str(k)))==sum(primefactors(k)), count(max(startvalue,1)))
    A356981_list = list(islice(A356981_gen(),30)) # Chai Wah Wu, Sep 12 2022