cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356992 Then a(n) = n - b(n - b(n - b(n - b(n - b(n - b(n)))))) for n >= 2, where b(n) = A356988(n).

Original entry on oeis.org

1, 2, 3, 4, 4, 4, 5, 6, 7, 7, 7, 8, 9, 10, 11, 11, 11, 11, 12, 13, 14, 15, 16, 17, 18, 18, 18, 18, 18, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 29, 29, 29, 29, 29, 29, 29, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 48
Offset: 2

Views

Author

Peter Bala, Sep 08 2022

Keywords

Comments

The sequence is slow, that is, for n >= 2, a(n+1) - a(n) is either 0 or 1. The sequence is unbounded.
The line graph of the sequence {a(n)} thus consists of a series of plateaus (where the value of the ordinate a(n) remains constant as n increases) joined by lines of slope 1.
The sequence of plateau heights begins 4, 7, 11, 18, 29, 47, ..., conjecturally the Lucas sequence {A000032(k): k >= 3}.
The plateaus start at abscissa values n = 5, 10, 16, 26, 42, 68, .... Apart from the first term 5, this appears to be the sequence {2*Fibonacci(k): k >= 5}.
The plateaus end at abscissa values n = 7, 12, 19, 31, 50, 81, ..., conjecturally the sequence {A013655(k): k >= 3}.
The sequence of plateau lengths begins 2, 2, 3, 5, 8, 13, .... Apart from the first term 2, this appears to be the sequence {Fibonacci(k): k >= 3}.
The slow sequences {a(a(n)): n >= 3} and {a(a(a(n))): n >= 4} appear to have similar properties to the present sequence. The slow sequence {n - a(n): n >= 2} appears to have plateaus at heights given by the Fibonacci sequence. See the Example section.

Examples

			Related sequences:
1) {n - a(n): n >= 2}
  1, 1, 1, 1, 2, 3, 3, 3, 3, 4, 5, 5, 5, 5, 5, 6, 7, 8, 8, 8, 8, 8, 8, 8, 8, 9, 10, 11, 12, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 14, 15, 16, 17, 18, 19, 20, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 35, 36, 37, ...
The line graph of the sequence has plateaus at heights 3, 5, 8, 13, 21, 34, ..., conjecturally the Fibonacci numbers A000045.
2) {a(a(n)): n >= 3}
  1, 2, 3, 3, 3, 4, 4, 4, 4, 4, 5, 6, 7, 7, 7, 7, 7, 7, 8, 9, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12, 13, 14, 15, 16, 17, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 47, 47, 47, 47, ...
The line graph of the sequence has plateaus at heights 3, 4, 7, 11, 28, 29, ..., conjecturally the Lucas numbers A000045.
3) {a(a(a(n))): n >= 4}
  1, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 9, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12, 13, 14, 15, 16, 17, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 29, 29, 29, ...
The line graph of the sequence has plateaus at heights (2), 3, 4, 7, 11, 28, 29, ..., conjecturally the Lucas numbers A000045.
		

Crossrefs

Programs

  • Maple
    b := proc(n) option remember; if n = 1 then 1 else n - b(b(n - b(b(b(n-1))))) end if; end proc:
    seq(n - b(n - b(n - b(n - b(n - b(n - b(n)))))), n = 2..100);