A356996 a(n) = b(n) - b(b(n)) - b(n - b(n)) for n >= 3, where b(n) = A356989(n).
0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 3, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0
Offset: 3
Examples
Sequence arranged as an irregular triangle; after the first row of zeros the row lengths are conjecturally equal to A164316(k) for k >= 2. 0, 0, 0, 0, 0; 1, 0, 0, 0; 1, 0, 0, 0, 0; 1, 0, 0, 0, 0, 0, 0; 1, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0; 1, 2, 3, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 1, 2, 3, 4, 3, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; ...
Programs
-
Maple
# b(n) = A356989 b := proc(n) option remember; if n = 1 then 1 else n - b(b(b(n - b(b(b(b(n-1))))))) end if; end proc: seq(b(n) - b(b(n)) - b(n - b(n)), n = 3..300);
Formula
a(n+1) - a(n) belongs to {1, 0, -1}.
Comments