A357017 Decimal expansion of the asymptotic density of odd numbers whose exponents in their prime factorization are squares.
4, 0, 9, 7, 9, 7, 4, 4, 6, 7, 1, 3, 3, 1, 9, 7, 0, 7, 5, 1, 0, 9, 2, 2, 9, 5, 6, 5, 2, 8, 4, 4, 0, 4, 9, 9, 9, 8, 2, 3, 0, 1, 6, 3, 9, 3, 9, 0, 6, 7, 2, 7, 3, 1, 1, 6, 9, 2, 2, 6, 8, 1, 6, 3, 7, 6, 2, 1, 9, 8, 3, 5, 0, 3, 1, 1, 5, 9, 5, 7, 3, 6, 2, 7, 8, 6, 0, 9, 3, 3, 9, 0, 2, 0, 1, 8, 0, 5, 3, 6, 9, 4, 1, 4, 5
Offset: 0
Examples
0.40979744671331970751092295652844049998230163939067...
Links
- Vladimir Shevelev, Exponentially S-numbers, arXiv:1510.05914 [math.NT], 2015-2016.
Programs
-
Mathematica
$MaxExtraPrecision = m = 1000; em = 100; f[x_] := Log[1 + Sum[x^(e^2), {e, 2, em}] - Sum[x^(e^2 + 1), {e, 1, em}]]; c = Rest[CoefficientList[Series[f[x], {x, 0, m}], x]*Range[0, m]]; RealDigits[(1/2) * Exp[NSum[Indexed[c, k]*(PrimeZetaP[k] - 1/2^k)/k, {k, 2, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 105][[1]]
Formula
Equals (1/2) * Product_{p odd prime} (1 + Sum_{k>=2} (c(k)-c(k-1))/p^k), where c(k) is the characteristic function of the squares (A010052).
Comments