cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A357019 a(n) is the largest possible x in n = x^2 - x*y + y^2 with integers x > y >= 0, or 0 if n cannot be expressed in this form.

Original entry on oeis.org

0, 1, 0, 2, 2, 0, 0, 3, 0, 3, 0, 0, 4, 4, 0, 0, 4, 0, 0, 5, 0, 5, 0, 0, 0, 5, 0, 6, 6, 0, 0, 6, 0, 0, 0, 0, 6, 7, 0, 7, 0, 0, 0, 7, 0, 0, 0, 0, 8, 8, 0, 0, 8, 0, 0, 0, 0, 8, 0, 0, 0, 9, 0, 9, 8, 0, 0, 9, 0, 0, 0, 0, 0, 9, 0, 10, 10, 0, 0, 10, 0, 9, 0, 0, 10, 0
Offset: 0

Views

Author

Hugo Pfoertner, Sep 10 2022

Keywords

Crossrefs

Programs

  • PARI
    dloesch(n) = {my(L=List()); foreach([-1,1], qs, my (D=qfbsolve(Qfb(1,qs,1), factor(n), 3), dnp=#D); for (k=1, dnp, if(D[k][1]^2+D[k][2]^2-abs(D[k][1]*D[k][2])==n, listput (L, [abs(D[k][1]),abs(D[k][2])])))); Set(L)};
    for (k=1, 85, my(D=dloesch(k), d=#D, m=0); for (j=1, d, m=max(m,D[j][1]));print1(m,", "))
    
  • Python
    from sympy.abc import x, y
    from sympy.solvers.diophantine.diophantine import diop_quadratic
    def A357019(n): return max((a for a,b in diop_quadratic(x*(x-y)+y**2-n)),default=0) # Chai Wah Wu, Sep 12 2022