A357019 a(n) is the largest possible x in n = x^2 - x*y + y^2 with integers x > y >= 0, or 0 if n cannot be expressed in this form.
0, 1, 0, 2, 2, 0, 0, 3, 0, 3, 0, 0, 4, 4, 0, 0, 4, 0, 0, 5, 0, 5, 0, 0, 0, 5, 0, 6, 6, 0, 0, 6, 0, 0, 0, 0, 6, 7, 0, 7, 0, 0, 0, 7, 0, 0, 0, 0, 8, 8, 0, 0, 8, 0, 0, 0, 0, 8, 0, 0, 0, 9, 0, 9, 8, 0, 0, 9, 0, 0, 0, 0, 0, 9, 0, 10, 10, 0, 0, 10, 0, 9, 0, 0, 10, 0
Offset: 0
Keywords
Programs
-
PARI
dloesch(n) = {my(L=List()); foreach([-1,1], qs, my (D=qfbsolve(Qfb(1,qs,1), factor(n), 3), dnp=#D); for (k=1, dnp, if(D[k][1]^2+D[k][2]^2-abs(D[k][1]*D[k][2])==n, listput (L, [abs(D[k][1]),abs(D[k][2])])))); Set(L)}; for (k=1, 85, my(D=dloesch(k), d=#D, m=0); for (j=1, d, m=max(m,D[j][1]));print1(m,", "))
-
Python
from sympy.abc import x, y from sympy.solvers.diophantine.diophantine import diop_quadratic def A357019(n): return max((a for a,b in diop_quadratic(x*(x-y)+y**2-n)),default=0) # Chai Wah Wu, Sep 12 2022