A357034 a(n) is the smallest number with exactly n divisors that are hoax numbers (A019506).
1, 22, 308, 638, 3696, 4212, 18480, 26400, 55080, 52800, 73920, 108108, 220320, 216216, 275400, 324324, 432432, 550800, 734400, 1908000, 1144800, 1101600, 1377000, 1652400, 3027024, 2203200, 4039200, 2754000, 3304800, 5724000, 6528600, 9180000, 8586000, 5508000
Offset: 0
Examples
1 has no divisors in A019506, so a(0) = 1; 22 has divisors 1, 2, 11, 22, and 22 = A019506(1), so a(1) = 22. 308 has divisors 1, 2, 4, 7, 11, 14, 22, 28, 44, 77, 154, 308 and 22 = A019506(1), 308 = A019506(14), so a(2) = 308.
Crossrefs
Cf. A019506.
Programs
-
Magma
hoax:=func
; a:=[]; for n in [0..33] do k:=1; while #[d:d in Set(Divisors(k)) diff {1}|hoax(d)] ne n do k:=k+1; end while; Append(~a,k); end for; a; -
Mathematica
digitSum[n_] := Total @ IntegerDigits[n]; hoaxQ[n_] := CompositeQ[n] && Total[digitSum /@ FactorInteger[n][[;; , 1]]] == digitSum[n]; f[n_] := DivisorSum[n, 1 &, hoaxQ[#] &]; seq[len_, nmax_] := Module[{s = Table[0, {len}], c = 0, n = 1, i}, While[c < len && n < nmax, i = f[n] + 1; If[i <= len && s[[i]] == 0, c++; s[[i]] = n]; n++]; s]; seq[10, 10^5] (* Amiram Eldar, Sep 26 2022 *)