cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A357035 a(n) is the smallest number that has exactly n divisors that are digitally balanced numbers (A031443).

Original entry on oeis.org

1, 2, 10, 36, 150, 180, 420, 840, 900, 3420, 2520, 5040, 6300, 7560, 12600, 15120, 18900, 42840, 32760, 37800, 95760, 105840, 69300, 124740, 163800, 138600, 166320, 327600, 249480, 207900, 491400, 622440, 498960, 706860, 415800, 963900, 1496880, 1164240, 1081080
Offset: 0

Views

Author

Marius A. Burtea, Sep 20 2022

Keywords

Examples

			1 has no divisors in A031443, so a(0) = 1;
2 has divisors 1 = 1_2, 2 = 10_2 and 2 = A031443(1), so a(1) = 2.
10 has divisors 2 = 10_2 and 10 = 1010_2 in A031443, so a(2) = 10.
		

Crossrefs

Cf. A031443.

Programs

  • Magma
    bal:=func; a:=[]; for n in [0..38] do k:=1; while #[d:d in Divisors(k)|bal(d)] ne n  do k:=k+1; end while; Append(~a,k); end for; a;
  • Maple
    N:= 20: # for terms before the first term >= 2^(N+1)
    W:= Vector(2^(N+1),datatype=integer[4]):
    for d from 2 to N by 2 do
    for t from 2^(d-1) to 2^d-1 do
      if convert(convert(t,base,2),`+`) = d/2 then
        J:= [seq(i,i=t..2^(N+1), t)];
        W[J]:= W[J] +~ 1;
    fi od od:
    M:= max(W);
    V:= Array(0..M); count:= 0:
    for i from 1 to 2^(N+1) do
      if V[W[i]] = 0 then V[W[i]]:= i; count:= count+1 fi
    od:
    L:= convert(V,list):
    if not member(0,L,'m') then m:= M+2 fi:
    L[1..m-1]; # Robert Israel, Sep 27 2023
  • Mathematica
    digBalQ[n_] := Module[{d = IntegerDigits[n, 2], m}, EvenQ @ (m = Length[d]) && Count[d, 1] == m/2]; f[n_] := DivisorSum[n, 1 &, digBalQ[#] &]; seq[len_, nmax_] := Module[{s = Table[0, {len}], c = 0, n = 1, i}, While[c < len && n < nmax, i = f[n] + 1; If[i <= len && s[[i]] == 0, c++; s[[i]] = n]; n++]; s]; seq[40, 10^7] (* Amiram Eldar, Sep 26 2022 *)

Extensions

Corrected by Robert Israel, Sep 27 2023