A357035 a(n) is the smallest number that has exactly n divisors that are digitally balanced numbers (A031443).
1, 2, 10, 36, 150, 180, 420, 840, 900, 3420, 2520, 5040, 6300, 7560, 12600, 15120, 18900, 42840, 32760, 37800, 95760, 105840, 69300, 124740, 163800, 138600, 166320, 327600, 249480, 207900, 491400, 622440, 498960, 706860, 415800, 963900, 1496880, 1164240, 1081080
Offset: 0
Examples
1 has no divisors in A031443, so a(0) = 1; 2 has divisors 1 = 1_2, 2 = 10_2 and 2 = A031443(1), so a(1) = 2. 10 has divisors 2 = 10_2 and 10 = 1010_2 in A031443, so a(2) = 10.
Links
- Robert Israel, Table of n, a(n) for n = 0..97
Crossrefs
Cf. A031443.
Programs
-
Magma
bal:=func
; a:=[]; for n in [0..38] do k:=1; while #[d:d in Divisors(k)|bal(d)] ne n do k:=k+1; end while; Append(~a,k); end for; a; -
Maple
N:= 20: # for terms before the first term >= 2^(N+1) W:= Vector(2^(N+1),datatype=integer[4]): for d from 2 to N by 2 do for t from 2^(d-1) to 2^d-1 do if convert(convert(t,base,2),`+`) = d/2 then J:= [seq(i,i=t..2^(N+1), t)]; W[J]:= W[J] +~ 1; fi od od: M:= max(W); V:= Array(0..M); count:= 0: for i from 1 to 2^(N+1) do if V[W[i]] = 0 then V[W[i]]:= i; count:= count+1 fi od: L:= convert(V,list): if not member(0,L,'m') then m:= M+2 fi: L[1..m-1]; # Robert Israel, Sep 27 2023
-
Mathematica
digBalQ[n_] := Module[{d = IntegerDigits[n, 2], m}, EvenQ @ (m = Length[d]) && Count[d, 1] == m/2]; f[n_] := DivisorSum[n, 1 &, digBalQ[#] &]; seq[len_, nmax_] := Module[{s = Table[0, {len}], c = 0, n = 1, i}, While[c < len && n < nmax, i = f[n] + 1; If[i <= len && s[[i]] == 0, c++; s[[i]] = n]; n++]; s]; seq[40, 10^7] (* Amiram Eldar, Sep 26 2022 *)
Extensions
Corrected by Robert Israel, Sep 27 2023