cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A359196 a(n) is the number of subsets of the divisors of n which sum to n+1.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 5, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 8, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 33, 1, 1, 1, 1, 1, 3, 1, 1, 1, 2, 1, 27, 1, 1, 1, 1, 1, 2, 1, 7, 1, 1, 1, 25, 1, 1, 1, 2, 1, 20, 1, 1, 1, 1, 1, 21, 1, 1, 1, 3
Offset: 1

Views

Author

Robert G. Wilson v, Dec 19 2022

Keywords

Comments

Inspired by an email from Alonso Del Arte, dated Dec 12 2022.
Only abundant numbers, A005101, have values exceeding one.
First term to have k subsets is n = A359197(k).
Question: Are the positions of records given by some subset of A002182? See also A065218, A340840. - Antti Karttunen, Jan 20 2025

Examples

			a(1) = 0; a(2) = 1 since the divisors of 2, {1, 2} sum to 3;
a(18) = 2 since the divisors of 18, {1, 2, 3, 6, 9, 18}, have two subsets, {1, 18}, {1, 3, 6, 9} which sum to 19;
a(12) = 3 since the divisors of 12, {1, 2, 3, 4, 6, 12}, have three subsets, {1, 12}, {3, 4, 6}, {1, 2, 4, 6} which sum to 13;
a(162) = 4 since its divisors are {1, 2, 3, 6, 9, 18, 27, 54, 81, 162}, have four subsets, {1, 162}, {1, 27, 54, 81}, {1, 9, 18, 54, 81}, {1, 3, 6, 18, 54, 81} which sum to 163;
a(24) = 5 since its divisors {1, 2, 3, 4, 6, 8, 12, 24} have five subsets {1, 24}, {1, 4, 8, 12}, {2, 3, 8, 12}, {3, 4, 6, 12}, {1, 2, 4, 6, 12} which sum to 25; etc.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Block[{c = k =1, d = Most@ Divisors@ n}, lgth = Length@ d; If[lgth < 18, c = 1 + Count[Total /@ Subsets@ d, n +1], While[k < 1 + 2^(lgth - 18), c += Count[Total /@ Subsets[d, All, {1 + (k -1)*2^18, k*2^18}], n +1]; k++]]; c]; Array[a, 100] (* or *)
    a[n_] := Block[{d = Divisors@ n}, SeriesCoefficient[ Series[ Product[1 + x^d[[i]], {i, Length@ d}], {x, 0, n +1}], n +1]]; Array[a, 100]
  • PARI
    A359196(n) = if(!n, 0, if(sigma(n)<=n, 1, my(p=1); fordiv(n, d, p *= (1 + 'x^d)); polcoeff(p, 1+n))); \\ Antti Karttunen, Jan 20 2025
Showing 1-1 of 1 results.