A357063 Lengths of the B blocks associated with A091787.
1, 4, 13, 42, 127, 382, 1149, 3448, 10345, 31044, 93133, 279400, 838203, 2514610, 7543831, 22631496, 67894489, 203683468, 611050413, 1833151240, 5499453721, 16498361166, 49495083499, 148485250498, 445455751497, 1336367254492, 4009101763477, 12027305290463, 36081915871390, 108245747614173, 324737242842520, 974211728527561, 2922635185582686, 8767905556748059, 26303716670244178, 78911150010732543, 236733450032197630, 710200350096592891
Offset: 1
Keywords
Examples
The third B-block of order 2 is B_3^{(2)}=2223222322233. Therefore, a(3)=13.
Links
- F. J. van de Bult, D. C. Gijswijt, J. P. Linderman, N. J. A. Sloane and Allan Wilks, A Slow-Growing Sequence Defined by an Unusual Recurrence, J. Integer Sequences, Vol. 10 (2007), Article 07.1.2.
Programs
-
Python
number_of_terms=38 def Cn(X): l=len(X) cn=1 for i in range(1,int(l/2)+1): j=i while(X[l-j-1]==X[l-j-1+i]): j=j+1 if j>=l: break candidate=int(j/i) if candidate>cn: cn=candidate return cn # This algorithm generates a prefix of the level-3 Gijswijt sequence def Generate_A3(number): glue_lengths=[] A3=[3] S=[3] i=0 while(True): c=Cn(A3) if c<3: glue_lengths.append(len(S)) i=i+1 if i==number: break S=[] A3.append(max(c,3)) S.append(max(c,3)) return glue_lengths glue_lengths=Generate_A3(number_of_terms-1) beta_lengths=[1] beta_length=1 for l in glue_lengths: beta_length=3*beta_length+l beta_lengths.append(beta_length) print(beta_lengths)
Extensions
By special permission, more than the usual number of terms are shown. - N. J. A. Sloane, Oct 23 2022
Comments