cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A357075 Numbers sandwiched between numbers with exactly three distinct prime factors.

Original entry on oeis.org

131, 139, 155, 169, 181, 221, 229, 239, 259, 265, 281, 307, 309, 311, 341, 349, 365, 371, 373, 379, 407, 409, 439, 441, 443, 469, 475, 491, 493, 505, 517, 519, 521, 529, 531, 533, 551, 559, 573, 581, 589, 599, 601, 611, 617, 619, 637, 643, 645, 664, 671, 679, 681, 683
Offset: 1

Views

Author

Tanya Khovanova, Sep 10 2022

Keywords

Comments

Number k such that both k-1 and k+1 are in A033992.

Examples

			131 is sandwiched between 130 = 2*5*13 and 132 = 2^2*3*11. Both 130 and 132 have exactly three prime factors. Thus, 131 is in this sequence.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1000],Length[FactorInteger[# + 1]] == 3 && Length[FactorInteger[# - 1]] == 3 &]
    Mean/@SequencePosition[Table[If[PrimeNu[n]==3,1,0],{n,700}],{1,,1}] (* _Harvey P. Dale, Jul 06 2025 *)
  • PARI
    is(n)=omega(n-1)==3 && omega(n+1)==3 \\ Charles R Greathouse IV, Sep 11 2022
    
  • PARI
    list(lim)=my(v=List(),a=3,b,c); forfactored(n=132,lim\1+1, c=#n[2]~; if(c==3 && a==3, listput(v,n[1]-1)); a=b; b=c); Vec(v) \\ Charles R Greathouse IV, Sep 28 2022
  • Python
    from sympy import factorint
    def isA033992(n): return len(factorint(n)) == 3
    def ok(n): return isA033992(n-1) and isA033992(n+1)
    print([k for k in range(700) if ok(k)]) # Michael S. Branicky, Sep 10 2022