A357075 Numbers sandwiched between numbers with exactly three distinct prime factors.
131, 139, 155, 169, 181, 221, 229, 239, 259, 265, 281, 307, 309, 311, 341, 349, 365, 371, 373, 379, 407, 409, 439, 441, 443, 469, 475, 491, 493, 505, 517, 519, 521, 529, 531, 533, 551, 559, 573, 581, 589, 599, 601, 611, 617, 619, 637, 643, 645, 664, 671, 679, 681, 683
Offset: 1
Examples
131 is sandwiched between 130 = 2*5*13 and 132 = 2^2*3*11. Both 130 and 132 have exactly three prime factors. Thus, 131 is in this sequence.
Programs
-
Mathematica
Select[Range[1000],Length[FactorInteger[# + 1]] == 3 && Length[FactorInteger[# - 1]] == 3 &] Mean/@SequencePosition[Table[If[PrimeNu[n]==3,1,0],{n,700}],{1,,1}] (* _Harvey P. Dale, Jul 06 2025 *)
-
PARI
is(n)=omega(n-1)==3 && omega(n+1)==3 \\ Charles R Greathouse IV, Sep 11 2022
-
PARI
list(lim)=my(v=List(),a=3,b,c); forfactored(n=132,lim\1+1, c=#n[2]~; if(c==3 && a==3, listput(v,n[1]-1)); a=b; b=c); Vec(v) \\ Charles R Greathouse IV, Sep 28 2022
-
Python
from sympy import factorint def isA033992(n): return len(factorint(n)) == 3 def ok(n): return isA033992(n-1) and isA033992(n+1) print([k for k in range(700) if ok(k)]) # Michael S. Branicky, Sep 10 2022
Comments