cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A357096 Least number whose set of decimal digits coincides with the set of decimal digits of prime(n).

Original entry on oeis.org

2, 3, 5, 7, 1, 13, 17, 19, 23, 29, 13, 37, 14, 34, 47, 35, 59, 16, 67, 17, 37, 79, 38, 89, 79, 10, 103, 107, 109, 13, 127, 13, 137, 139, 149, 15, 157, 136, 167, 137, 179, 18, 19, 139, 179, 19, 12, 23, 27, 29, 23, 239, 124, 125, 257, 236, 269, 127, 27, 128, 238, 239
Offset: 1

Views

Author

Jean-Marc Rebert, Sep 12 2022

Keywords

Examples

			prime(5) = 11 and 1 have the same set of digits {1}, and 1 is the smallest such number, hence a(5) = 1.
		

Crossrefs

Programs

  • Maple
    f:= proc(p) local L,i;
      L:= sort(convert(convert(convert(p,base,10),set),list));
      if L[1] = 0 then L[1]:= L[2]; L[2]:= 0 fi;
      add(L[-i]*10^(i-1),i=1..nops(L)) end proc:
    seq(f(ithprime(i)),i=1..100); # Robert Israel, Sep 12 2022
  • Mathematica
    a[n_] := Module[{d = Union[IntegerDigits[Prime[n]]]}, If[d[[1]] == 0, d[[1;;2]] = d[[2;;1;;-1]]]; FromDigits[d]]; Array[a, 100] (* Amiram Eldar, Sep 13 2022 *)
  • PARI
    a(n)=my(v=vecsort(digits(prime(n)),,8),w=v);if(v[1]==0,j=#v;w=if(j>2,v[3..j],[]);w=concat(Vecrev(v[1..2]),w));fromdigits(w)
    
  • Python
    from sympy import prime
    def a(n):
        s = "".join(sorted(set(str(prime(n)))))
        return int(s) if "0" not in s else int(s[1] + "0" + s[2:])
    print([a(n) for n in range(1, 63)]) # Michael S. Branicky, Sep 12 2022