A357097 A multiplication table for the rows of the extended Wythoff array. See comments for definition.
0, 1, 1, 2, 15, 2, 3, 8, 8, 3, 4, 12, 4, 12, 4, 5, 44, 18, 18, 44, 5, 6, 19, 24, 27, 24, 19, 6, 7, 62, 28, 96, 96, 28, 62, 7, 8, 26, 34, 42, 128, 42, 34, 26, 8, 9, 30, 14, 51, 56, 56, 51, 14, 30, 9, 10, 91, 44, 57, 180, 65, 180, 57, 44, 91, 10, 11, 37, 50, 66, 76, 79, 79, 76, 66, 50, 37, 11
Offset: 0
Examples
Calculation for A(1,2). Rows 1 and 2 of A287870 (indexed from 0) start 1, 3, ... and 2, 4, ... . So we may use the pairs (3,1) and (4,2). The defined multiplication gives (3*4 + 1*2, 3*2 + 4*1 - 1*2) = (14,8). 8, 14 , ... is in row 8 of A287870, so A(1,2) = 8. For A(1,1), we start as above to get (3*3 + 1*1, 3*1 + 3*1 - 1*1) = (10,5). In the more general case, we form a sequence using the Fibonacci recurrence (as ..., 5, 10, ... may be in the extension leftwards of A287870). This starts 5, 10, 5+10=15, 10+15=25, 15+25=40, ... . We observe 15, 25, 40, ... is in row 15. So A(1,1) = 15. The top left corner of the array: 0 1 2 3 4 5 6 7 8 9 1 15 8 12 44 19 62 26 30 91 2 8 4 18 24 28 34 14 44 50 3 12 18 27 96 42 51 57 66 198 4 44 24 96 128 56 180 76 88 264 5 19 28 42 56 65 79 33 102 116 6 62 34 51 180 79 253 107 124 371 7 26 14 57 76 33 107 45 138 157 8 30 44 66 88 102 124 138 160 182 9 91 50 198 264 116 371 157 182 544
Links
- Peter G. Anderson, More Properties of the Zeckendorf Array, Fib. Quart. 52-5 (2014), 15-21.
- P. Arnoux, Some remarks about Fibonacci multiplication, Appl. Math. Lett. 2 (1989), 319-320.
- Clark Kimberling, The Zeckendorf array equals the Wythoff array, Fibonacci Quarterly, Vol. 33, No. 1 (1995), pp. 3-8.
Crossrefs
Programs
-
PARI
lowerw(n) = (n+sqrtint(5*n^2))\2 ; \\ A000201 upperw(n) = (sqrtint(n^2*5)+n*3)\2; \\ A001950 compoundw(n) = (sqrtint(n^2*5)+n*3)\2 - 1; \\ A003622 wpair(p) = {my(x=p[2], y = p[1], z); while(1, my(n=1, ok=1); while(ok, my(xx = lowerw(n), yy = upperw(n)); if ((x == xx) && (y == yy), return([xx, yy])); if (xx > x, ok = 0); n++;); z = y; y += x; x = z;);} row(p) = {my(x=p[1], y=p[2], u); while (1, my(n=1, ok=1); while(ok, my(xx = lowerw(n), yy = compoundw(n)); if ((x == xx) && (y == yy), return(n)); if (xx > x, ok = 0); n++;); u = x; x = y - u; y = u;);} \\ similar to A120873 wrow(p) = row(wpair(p)); prodpair(v1, v2) = my(j1=v1[1], j2 = v2[1], k1 = v1[2], k2 = v2[2]); [j1*j2 + k1*k2, j1*k2 + k1*j2 - k1*k2]; pair(n) = [lowerw(n+1), n]; T(n, k) = my(pn = pair(n), pk = pair(k), px = prodpair(pn, pk)); wrow(px)-1; \\ Michel Marcus, Sep 18 2022
Comments