cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A357097 A multiplication table for the rows of the extended Wythoff array. See comments for definition.

Original entry on oeis.org

0, 1, 1, 2, 15, 2, 3, 8, 8, 3, 4, 12, 4, 12, 4, 5, 44, 18, 18, 44, 5, 6, 19, 24, 27, 24, 19, 6, 7, 62, 28, 96, 96, 28, 62, 7, 8, 26, 34, 42, 128, 42, 34, 26, 8, 9, 30, 14, 51, 56, 56, 51, 14, 30, 9, 10, 91, 44, 57, 180, 65, 180, 57, 44, 91, 10, 11, 37, 50, 66, 76, 79, 79, 76, 66, 50, 37, 11
Offset: 0

Views

Author

Peter Munn, Sep 11 2022

Keywords

Comments

Square array A(x,y), x >= 0, y >= 0, defined as follows:
(1) Extend the Wythoff array infinitely to the left, maintaining the Fibonacci recurrence (see A287870 examples). We denote this extended array as eW(n,m), n >= 0, m any integer, indexed such that eW(n,0) = n. From each row n, form the set of pairs S_n = {(eW(n,m+1),eW(n,m)) : integer m)}.
(2) Define addition and multiplication of pairs by (j1,k1) + (j2,k2) = (j1+j2, k1+k2) and (j1,k1) o (j2,k2) = (j1*j2 + k1*k2, j1*k2 + k1*j2 - k1*k2). (This defines a commutative ring with identity (1,0).)
(3) For nonnegative integers x and y, there is an integer z such that for every pair (j_x,k_x) in S_x and every pair (j_y,k_y) in S_y, (j_x,k_x) o (j_y,k_y) is in S_z. Define A(x,y) = z.
As a binary operation, A(.,.) is analogous to multiplication of coefficients in scientific numeric notation. The column position, m, used to define a pair in (1) above does not affect the eventual outcome, A(x,y), in (3), as no special pairs are selected from the pairs in S_x or S_y. The column position is analogous to the exponent. Notice also A(1,1) = 15 is substantially larger than A(2,2) = 4. This can be seen as analogous to 0.3 * 0.4 = 0.12 requiring more digits than 0.5 * 0.8 = 0.4.

Examples

			Calculation for A(1,2). Rows 1 and 2 of A287870 (indexed from 0) start 1, 3, ... and 2, 4, ... . So we may use the pairs (3,1) and (4,2). The defined multiplication gives (3*4 + 1*2, 3*2 + 4*1 - 1*2) = (14,8). 8, 14 , ... is in row 8 of A287870, so A(1,2) = 8.
For A(1,1), we start as above to get (3*3 + 1*1, 3*1 + 3*1 - 1*1) = (10,5). In the more general case, we form a sequence using the Fibonacci recurrence (as ..., 5, 10, ... may be in the extension leftwards of A287870). This starts 5, 10, 5+10=15, 10+15=25, 15+25=40, ... . We observe 15, 25, 40, ... is in row 15. So A(1,1) = 15.
The top left corner of the array:
  0   1   2    3    4    5    6    7    8    9
  1  15   8   12   44   19   62   26   30   91
  2   8   4   18   24   28   34   14   44   50
  3  12  18   27   96   42   51   57   66  198
  4  44  24   96  128   56  180   76   88  264
  5  19  28   42   56   65   79   33  102  116
  6  62  34   51  180   79  253  107  124  371
  7  26  14   57   76   33  107   45  138  157
  8  30  44   66   88  102  124  138  160  182
  9  91  50  198  264  116  371  157  182  544
		

Crossrefs

See the formula section for the relationships with A000201, A003622, A019586, A035336, A101330.

Programs

  • PARI
    lowerw(n) = (n+sqrtint(5*n^2))\2 ; \\ A000201
    upperw(n) = (sqrtint(n^2*5)+n*3)\2; \\ A001950
    compoundw(n) = (sqrtint(n^2*5)+n*3)\2 - 1; \\ A003622
    wpair(p) = {my(x=p[2], y = p[1], z); while(1, my(n=1, ok=1); while(ok, my(xx = lowerw(n), yy = upperw(n)); if ((x == xx) && (y == yy), return([xx, yy])); if (xx > x, ok = 0); n++;); z = y; y += x; x = z;);}
    row(p) = {my(x=p[1], y=p[2], u); while (1, my(n=1, ok=1); while(ok, my(xx = lowerw(n), yy = compoundw(n)); if ((x == xx) && (y == yy), return(n)); if (xx > x, ok = 0); n++;); u = x; x = y - u; y = u;);} \\ similar to A120873
    wrow(p) = row(wpair(p));
    prodpair(v1, v2) = my(j1=v1[1], j2 = v2[1], k1 = v1[2], k2 = v2[2]); [j1*j2 + k1*k2, j1*k2 + k1*j2 - k1*k2];
    pair(n) = [lowerw(n+1), n];
    T(n, k) = my(pn = pair(n), pk = pair(k), px = prodpair(pn, pk)); wrow(px)-1; \\ Michel Marcus, Sep 18 2022

Formula

A(x,y) = g(j1*j2 + k1*k2, j1*k2 + k1*j2 - k1*k2), where j1 = A035336(x+1), j2 = A035336(y+1), k1 = A003622(x+1), k2 = A003622(y+1) and g(j,k) = (if j = A000201(k+1) then k otherwise g(k,j-k)).
A(x,y) = A(y,x).
A(x,0) = x.
A(x, A(y,z)) = A(A(x,y), z).
A022344(A(x,y)) = A022344(x) * A022344(y).
A(A019586(x), A019586(y)) = A019586(A101330(x,y)). (conjectured)