A357133 a(n) is the least prime that is the arithmetic mean of n consecutive primes.
5, 127, 79, 101, 17, 269, 491, 727, 53, 23, 71, 181, 29, 31, 37, 43, 563, 331, 883, 283, 173, 307, 157, 113, 353, 571, 347, 89, 263, 139, 179, 1201, 281, 1553, 137, 5167, 347, 563, 2083, 2087, 491, 1867, 353, 463, 1973, 199, 599, 4373, 149, 9929, 277, 463, 1259, 251, 397, 2897, 787, 263, 2161
Offset: 3
Keywords
Examples
a(5) = 79 because 79 is the average of the 5 consecutive primes 71, 73, 79, 83, 89, and 79 is the least prime that works.
Links
- Robert Israel, Table of n, a(n) for n = 3..7000
Programs
-
Maple
P:= [seq(ithprime(i),i=1..10^5)]: S:= ListTools:-PartialSums(P): g:= proc(n) local k,r; for k from 1 to 10^5-n do r:= (S[k+n]-S[k])/n; if r::integer and isprime(r) then return r fi od; -1 end proc: map(g, [$3..100]);
-
Mathematica
a={}; n=3; For[k=1, k<=1200, k++, If[PrimeQ[p=Sum[Prime[k+i], {i,0,n-1}]/n], AppendTo[a,p]; n++; k=1]]; a (* Stefano Spezia, Sep 15 2022 *)
-
Python
from itertools import islice from sympy import isprime, nextprime def agen(): n, plst0 = 3, [2, 3, 5] while True: plst = plst0[:] while True: q, r = divmod(sum(plst), n) if r == 0 and isprime(q): yield q; break plst = plst[1:] + [nextprime(plst[-1])] plst0.append(nextprime(plst0[-1])) n += 1 print(list(islice(agen(), 60))) # Michael S. Branicky, Sep 14 2022