cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A357143 a(n) is sum of the base-5 digits of n each raised to the number of digits of n in base 5.

Original entry on oeis.org

1, 2, 3, 4, 1, 2, 5, 10, 17, 4, 5, 8, 13, 20, 9, 10, 13, 18, 25, 16, 17, 20, 25, 32, 1, 2, 9, 28, 65, 2, 3, 10, 29, 66, 9, 10, 17, 36, 73, 28, 29, 36, 55, 92, 65, 66, 73, 92, 129, 8, 9, 16, 35, 72, 9, 10, 17, 36, 73, 16, 17, 24, 43, 80, 35, 36, 43, 62, 99, 72, 73, 80, 99, 136, 27
Offset: 1

Views

Author

Keywords

Examples

			For n = 13_10 = 23_5 (2 digits in base 5): a(13) = 2^2 + 3^2 = 13.
For n = 73_10 = 243_5 (3 digits in base 5): a(73) = 2^3 + 4^3 + 3^3 = 99.
		

Crossrefs

Cf. in base 10: A157714, A101337, A151544.

Programs

  • Maple
    f:= proc(n) local L,d,i;
      L:= convert(n,base,5);
      d:= nops(L);
      add(L[i]^d,i=1..d)
    end proc:
    map(f,[$1..100]); # Robert Israel, Oct 26 2023
  • Mathematica
    a[n_] := Total[IntegerDigits[n, 5]^IntegerLength[n, 5]]; Array[a, 100] (* Amiram Eldar, Oct 30 2022 *)
  • PARI
    a(n) = my(d=digits(n, 5)); sum(k=1, #d, d[k]^#d); \\ Michel Marcus, Oct 29 2022
    
  • Python
    from sympy.ntheory.factor_ import digits
    def A357143(n):
        t = len(s:=digits(n,5)[1:])
        return sum(d**t for d in s) # Chai Wah Wu, Oct 31 2022

Formula

a(n) = Sum_{i=1..A110592(n)} d(i)^A110592(n), where d(i) is the i-th digit of n in base 5.

Extensions

Corrected and extended by Michel Marcus, Oct 29 2022