A357156 Coefficients in the power series expansion of A(x) = Sum_{n=-oo..+oo} n*(n+1)*(n+2)/6 * x^(3*n) * (1 - x^n)^(n-2).
1, 1, 1, 6, 1, 1, 16, 1, 1, 22, 1, 1, 71, -63, 1, 127, 1, -158, 211, 1, 1, -117, 176, 1, 496, -923, 1, 1277, 1, -1727, 1002, 1, 1681, -2021, 1, 1, 1821, -1027, 1, 912, 1, -7721, 11146, 1, 1, -12571, 736, 15401, 4846, -17016, 1, -6389, 27457, -20956, 7316, 1, 1, -6486, 1, 1, 22177
Offset: 3
Keywords
Examples
G.f.: A(x) = x^3 + x^4 + x^5 + 6*x^6 + x^7 + x^8 + 16*x^9 + x^10 + x^11 + 22*x^12 + x^13 + x^14 + 71*x^15 - 63*x^16 + x^17 + 127*x^18 + ... where A(x) = ... - 4*x^(-12)*(1 - x^(-4))^(-6) - 1*x^(-9)*(1 - x^(-3))^(-5) + 0*x^(-6) + 0*x^(-3) + 0 + 1*x^3/(1-x) + 4*x^6 + 10*x^9*(1 - x^3) + 20*x^12*(1 - x^4)^2 + 35*x^15*(1 - x^5)^3 + ... + n*(n+1)*(n+2)/6 * x^(3*n)*(1 - x^n)^(n-2) + ...
Links
- Paul D. Hanna, Table of n, a(n) for n = 3..2050
Programs
-
PARI
{a(n) = my(A = sum(m=-n-1,n+1, if(m==0,0, m*(m+1)*(m+2)/6 * x^(3*m) * (1 - x^m +x*O(x^n))^(m-2) )) ); polcoeff(A,n)} for(n=3,100,print1(a(n),", "))
Formula
G.f. A(x) = Sum_{n>=3} a(n)*x^n satisfies:
(1) A(x) = Sum_{n=-oo..+oo} n*(n+1)*(n+2)/6 * x^(3*n) * (1 - x^n)^(n-2).
(2) A(x) = Sum_{n=-oo..+oo} n*(n+1)*(n+2)/6 * x^(4*n) * (1 - x^n)^(n-2).
(3) A(x) = Sum_{n=-oo..+oo} n*(n+1)*(n+2)*(n+3)/24 * x^(3*n) * (1 - x^n)^(n-2).
(4) A(x) = Sum_{n=-oo..+oo} -(-1)^n * n*(n-1)*(n-2)/6 * x^(n*(n-2)) / (1 - x^n)^(n+2).
(5) A(x) = Sum_{n=-oo..+oo} -(-1)^n * n*(n-1)*(n-2)/6 * x^(n*(n-1)) / (1 - x^n)^(n+2).
(6) A(x) = Sum_{n=-oo..+oo} (-1)^n * n*(n-1)*(n-2)*(n-3)/24 * x^(n*(n-1)) / (1 - x^n)^(n+2).
Comments