A357200
Coefficients in the power series A(x) such that: 1 = Sum_{n=-oo..+oo} x^n * (1 - x^(n+1))^(n+1) * A(x)^n.
Original entry on oeis.org
1, 1, 0, 0, -7, -3, -17, 52, 51, 384, -227, -52, -6311, -2722, -18733, 79229, 67453, 620385, -619315, 85796, -13137380, -595833, -43282243, 205480697, 66895157, 1551910768, -2300631561, 1546386060, -36481481081, 15982958026, -135266506195, 652843485153
Offset: 0
G.f.: A(x) = 1 + x - 7*x^4 - 3*x^5 - 17*x^6 + 52*x^7 + 51*x^8 + 384*x^9 - 227*x^10 - 52*x^11 - 6311*x^12 - 2722*x^13 - 18733*x^14 + ...
such that
1 = ... + x^(-2)*(1 - 1/x)^(-1)/A(x)^2 + x^(-1)/A(x) + (1 - x) + x*(1 - x^2)*A(x) + x^2*(1 - x^3)^3*A(x)^2 + x^3*(1 - x^4)^4*A(x)^3 + ... + x^n*(1 - x^(n+1))^(n+1)*A(x)^n + ...
also
-A(x)^3 = ... + x^(-2)*(A(x) - 1/x)^(-1)*A(x)^2 + x^(-1)*A(x) + (A(x) - x) + x*(A(x) - x^2)^2/A(x) + x^2*(A(x) - x^3)^3/A(x)^2 + x^3*(A(x) - x^4)^4/A(x)^3 + ... + x^n*(A(x) - x^(n+1))^(n+1)/A(x)^n + ...
-
{a(n) = my(A=[1]); for(i=0, n, A = concat(A, 0);
A[#A] = polcoeff(1 - sum(n=-#A-2, #A+2, x^n * (1 - x^(n+1) +x*O(x^#A))^(n+1) * Ser(A)^n ), #A-2); ); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
A357201
Coefficients in the power series A(x) such that: A(x) = Sum_{n=-oo..+oo} x^n * (1 - x^(n+1))^(n+1) * A(x)^n.
Original entry on oeis.org
1, 1, 1, 3, 1, 5, -26, -75, -430, -1183, -4249, -10191, -27443, -42735, -35715, 341250, 2073952, 9886007, 36365567, 124484714, 364966293, 965150205, 1958034669, 2048555297, -9110607428, -76703557685, -383500583452, -1539890758482, -5456784935108, -17115737273816
Offset: 0
G.f.: A(x) = 1 + x + x^2 + 3*x^3 + x^4 + 5*x^5 - 26*x^6 - 75*x^7 - 430*x^8 - 1183*x^9 - 4249*x^10 - 10191*x^11 - 27443*x^12 + ...
such that
A(x) = ... + x^(-2)*(1 - 1/x)^(-1)/A(x)^2 + x^(-1)/A(x) + (1 - x) + x*(1 - x^2)*A(x) + x^2*(1 - x^3)^3*A(x)^2 + x^3*(1 - x^4)^4*A(x)^3 + ... + x^n*(1 - x^(n+1))^(n+1)*A(x)^n + ...
also
-A(x)^4 = ... + x^(-2)*(A(x) - 1/x)^(-1)*A(x)^2 + x^(-1)*A(x) + (A(x) - x) + x*(A(x) - x^2)^2/A(x) + x^2*(A(x) - x^3)^3/A(x)^2 + x^3*(A(x) - x^4)^4/A(x)^3 + ... + x^n*(A(x) - x^(n+1))^(n+1)/A(x)^n + ...
-
{a(n) = my(A=[1]); for(i=0, n, A = concat(A, 0);
A[#A] = polcoeff(Ser(A) - sum(n=-#A-2, #A+2, x^(n) * (1 - x^(n+1) +x*O(x^#A))^(n+1) * Ser(A)^n ), #A-2); ); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
A357202
Coefficients in the power series A(x) such that: A(x)^2 = Sum_{n=-oo..+oo} x^n * (1 - x^(n+1))^(n+1) * A(x)^n.
Original entry on oeis.org
1, 1, 2, 9, 35, 182, 921, 5062, 28234, 162330, 947773, 5622641, 33747694, 204676547, 1252083028, 7717376754, 47878314072, 298749048454, 1873637869199, 11804288518884, 74673607921030, 474128308291896, 3020493580980524, 19301224674496592, 123681469340775568
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 9*x^3 + 35*x^4 + 182*x^5 + 921*x^6 + 5062*x^7 + 28234*x^8 + 162330*x^9 + 947773*x^10 + 5622641*x^11 + 33747694*x^12 + ...
such that
A(x)^2 = ... + x^(-2)*(1 - 1/x)^(-1)/A(x)^2 + x^(-1)/A(x) + (1 - x) + x*(1 - x^2)*A(x) + x^2*(1 - x^3)^3*A(x)^2 + x^3*(1 - x^4)^4*A(x)^3 + ... + x^n*(1 - x^(n+1))^(n+1)*A(x)^n + ...
also
-A(x)^5 = ... + x^(-2)*(A(x) - 1/x)^(-1)*A(x)^2 + x^(-1)*A(x) + (A(x) - x) + x*(A(x) - x^2)^2/A(x) + x^2*(A(x) - x^3)^3/A(x)^2 + x^3*(A(x) - x^4)^4/A(x)^3 + ... + x^n*(A(x) - x^(n+1))^(n+1)/A(x)^n + ...
-
{a(n) = my(A=[1]); for(i=0, n, A = concat(A, 0);
A[#A] = polcoeff(Ser(A)^2 - sum(n=-#A-2, #A+2, x^(n) * (1 - x^(n+1) +x*O(x^#A))^(n+1) * Ser(A)^n ), #A-2); ); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
A357203
Coefficients in the power series A(x) such that: A(x)^3 = Sum_{n=-oo..+oo} x^n * (1 - x^(n+1))^(n+1) * A(x)^n.
Original entry on oeis.org
1, 1, 3, 18, 111, 800, 5990, 46995, 379090, 3129713, 26301576, 224282112, 1935668344, 16876028036, 148410725830, 1314933853171, 11726585616205, 105178923513494, 948185788906100, 8586757756571261, 78079244607685021, 712592590813142079, 6525273550226573555
Offset: 0
G.f.: A(x) = 1 + x + 3*x^2 + 18*x^3 + 111*x^4 + 800*x^5 + 5990*x^6 + 46995*x^7 + 379090*x^8 + 3129713*x^9 + 26301576*x^10 + ...
such that
A(x)^3 = ... + x^(-2)*(1 - 1/x)^(-1)/A(x)^2 + x^(-1)/A(x) + (1 - x) + x*(1 - x^2)*A(x) + x^2*(1 - x^3)^3*A(x)^2 + x^3*(1 - x^4)^4*A(x)^3 + ... + x^n*(1 - x^(n+1))^(n+1)*A(x)^n + ...
also
-A(x)^6 = ... + x^(-2)*(A(x) - 1/x)^(-1)*A(x)^2 + x^(-1)*A(x) + (A(x) - x) + x*(A(x) - x^2)^2/A(x) + x^2*(A(x) - x^3)^3/A(x)^2 + x^3*(A(x) - x^4)^4/A(x)^3 + ... + x^n*(A(x) - x^(n+1))^(n+1)/A(x)^n + ...
-
{a(n) = my(A=[1]); for(i=0, n, A = concat(A, 0);
A[#A] = polcoeff(Ser(A)^3 - sum(n=-#A-2, #A+2, x^(n) * (1 - x^(n+1) +x*O(x^#A))^(n+1) * Ser(A)^n ), #A-2); ); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
A357204
Coefficients in the power series A(x) such that: A(x)^4 = Sum_{n=-oo..+oo} x^n * (1 - x^(n+1))^(n+1) * A(x)^n.
Original entry on oeis.org
1, 1, 4, 30, 245, 2256, 21849, 220655, 2294241, 24402721, 264251525, 2903503779, 32289673568, 362755014742, 4110792367801, 46933876797456, 539362815736466, 6234031681945681, 72421584940086375, 845164178044504188, 9903469546224045896, 116475680442085941037
Offset: 0
G.f.: A(x) = 1 + x + 4*x^2 + 30*x^3 + 245*x^4 + 2256*x^5 + 21849*x^6 + 220655*x^7 + 2294241*x^8 + 24402721*x^9 + 264251525*x^10 + ...
such that
A(x)^4 = ... + x^(-2)*(1 - 1/x)^(-1)/A(x)^2 + x^(-1)/A(x) + (1 - x) + x*(1 - x^2)*A(x) + x^2*(1 - x^3)^3*A(x)^2 + x^3*(1 - x^4)^4*A(x)^3 + ... + x^n*(1 - x^(n+1))^(n+1)*A(x)^n + ...
also
-A(x)^7 = ... + x^(-2)*(A(x) - 1/x)^(-1)*A(x)^2 + x^(-1)*A(x) + (A(x) - x) + x*(A(x) - x^2)^2/A(x) + x^2*(A(x) - x^3)^3/A(x)^2 + x^3*(A(x) - x^4)^4/A(x)^3 + ... + x^n*(A(x) - x^(n+1))^(n+1)/A(x)^n + ...
-
{a(n) = my(A=[1]); for(i=0, n, A = concat(A, 0);
A[#A] = polcoeff(Ser(A)^4 - sum(n=-#A-2, #A+2, x^(n) * (1 - x^(n+1) +x*O(x^#A))^(n+1) * Ser(A)^n ), #A-2); ); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
Showing 1-5 of 5 results.
Comments