A357235 Table read by antidiagonals: T(n,k) (n >= 3, k >= 0) is the number of vertices in an n-gon when k internal n-gons are drawn between the n*k points that divide each side into k+1 equal parts.
3, 6, 4, 15, 8, 5, 30, 20, 10, 6, 51, 40, 25, 12, 7, 66, 68, 50, 30, 14, 8, 111, 88, 85, 60, 35, 16, 9, 150, 148, 130, 102, 70, 40, 18, 10, 171, 168, 185, 156, 119, 80, 45, 20, 11, 246, 260, 250, 222, 182, 136, 90, 50, 22, 12, 303, 296, 325, 300, 259, 208, 153, 100, 55, 24, 13
Offset: 3
Examples
The table begins: 3, 6, 15, 30, 51, 66, 111, 150, 171, 246, 303, 312, 435, 510, 543, ... 4, 8, 20, 40, 68, 88, 148, 168, 260, 296, 404, 436, 580, 632, 788, ... 5, 10, 25, 50, 85, 130, 185, 250, 325, 410, 505, 610, 725, 850, 985, ... 6, 12, 30, 60, 102, 156, 222, 300, 390, 468, 606, 708, 870, 1020, 1152, ... 7, 14, 35, 70, 119, 182, 259, 350, 455, 574, 707, 854, 1015, 1190, 1379, ... 8, 16, 40, 80, 136, 208, 296, 400, 520, 656, 808, 976, 1160, 1360, 1576, ... 9, 18, 45, 90, 153, 234, 333, 450, 585, 738, 909, 1098, 1305, 1530, 1773, ... 10, 20, 50, 100, 170, 260, 370, 500, 650, 820, 1010, 1220, 1450, 1700, 1970, ... 11, 22, 55, 110, 187, 286, 407, 550, 715, 902, 1111, 1342, 1595, 1870, 2167, ... 12, 24, 60, 120, 204, 312, 444, 600, 780, 984, 1212, 1464, 1740, 2040, 2364, ... 13, 26, 65, 130, 221, 338, 481, 650, 845, 1066, 1313, 1586, 1885, 2210, 2561, ... 14, 28, 70, 140, 238, 364, 518, 700, 910, 1148, 1414, 1708, 2030, 2380, 2758, ... 15, 30, 75, 150, 255, 390, 555, 750, 975, 1230, 1515, 1830, 2175, 2550, 2955, ... See the attached text file for further examples. See A357007, A357060, A357197 for more images of the n-gons.
Links
- Scott R. Shannon, Extended table for n = 3..50, k = 0..75.
- Scott R. Shannon, Image of T(5,20) = 2005.
- Scott R. Shannon, Image of T(7,10) = 707.
Comments