A357217 Array read by descending antidiagonals: T(n,k) is the number of cycles of the permutation given by the order of elimination in the Josephus problem for n numbers and a count of k; n, k >= 1.
1, 1, 2, 1, 1, 3, 1, 2, 2, 4, 1, 1, 1, 2, 5, 1, 2, 2, 2, 1, 6, 1, 1, 1, 2, 1, 1, 7, 1, 2, 2, 2, 1, 2, 4, 8, 1, 1, 3, 2, 3, 3, 3, 2, 9, 1, 2, 2, 2, 3, 2, 2, 2, 1, 10, 1, 1, 1, 2, 1, 3, 3, 2, 3, 5, 11, 1, 2, 2, 2, 3, 2, 2, 4, 5, 2, 2, 12, 1, 1, 1, 2, 3, 1, 3, 2, 3, 1, 3, 2, 13
Offset: 1
Examples
Array begins: n\k| 1 2 3 4 5 6 7 8 9 10 ---+------------------------------ 1 | 1 1 1 1 1 1 1 1 1 1 2 | 2 1 2 1 2 1 2 1 2 1 3 | 3 2 1 2 1 2 3 2 1 2 4 | 4 2 2 2 2 2 2 2 2 2 5 | 5 1 1 1 3 3 1 3 3 3 6 | 6 1 2 3 2 3 2 1 2 3 7 | 7 4 3 2 3 2 3 2 5 2 8 | 8 2 2 2 4 2 2 4 6 2 9 | 9 1 3 5 3 3 3 3 3 3 10 | 10 5 2 1 2 3 2 1 2 3 For n = 4, k = 2, the order of elimination is (2,4,3,1) (row 4 of A321298). This permutation has two cycles, (1 2 4) and (3), so T(4,2) = 2.
Links
- Pontus von Brömssen, Antidiagonals n = 1..100, flattened
- James Dowdy and Michael E. Mays, Josephus permutations, Journal of Combinatorial Mathematics and Combinatorial Computing 6 (1989), 125-130.
- Wikipedia, Josephus problem
- Index entries for sequences related to the Josephus Problem
Crossrefs
Programs
-
Python
from sympy.combinatorics import Permutation def A357217(n,k): return Permutation.josephus(k,n).cycles
Comments