cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A357221 Coefficients in the power series A(x) such that: x*A(x) = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)) * A(x)^n.

Original entry on oeis.org

1, 1, 2, 8, 26, 97, 361, 1399, 5532, 22318, 91387, 379037, 1588769, 6720065, 28645624, 122937300, 530748439, 2303446566, 10043922651, 43979954296, 193309569331, 852599816069, 3772220833468, 16737583785420, 74461239372631, 332062396407641, 1484162266154404
Offset: 0

Views

Author

Paul D. Hanna, Sep 18 2022

Keywords

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 8*x^3 + 26*x^4 + 97*x^5 + 361*x^6 + 1399*x^7 + 5532*x^8 + 22318*x^9 + 91387*x^10 + 379037*x^11 + 1588769*x^12 + ...
such that
x*A(x) = ... + x^12/A(x)^4 - x^6/A(x)^3 + x^2/A(x)^2 - 1/A(x) + 1 - x^2*A(x) + x^6*A(x)^2 - x^12*A(x)^3 + x^20*A(x)^4 + ... + (-1)^n * x^(n*(n+1)) * A(x)^n + ...
		

Crossrefs

Programs

  • PARI
    {a(n,p=1) = my(A=[1]); for(i=1, n, A=concat(A, 0);
    A[#A] = polcoeff( x*Ser(A)^p - sum(m=-ceil(sqrt(n+1)), ceil(sqrt(n+1)), (-1)^m*x^(m*(m+1))*Ser(A)^m ), #A-1)); A[n+1]}
    for(n=0, 30, print1(a(n), ", "))

Formula

G.f. A(x) satisfies:
(1) x*A(x) = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)) * A(x)^n.
(2) -x*A(x)^2 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)) / A(x)^n.
(3) x*A(x) = Product_{n>=1} (1 - x^(2*n)*A(x)) * (1 - x^(2*n-2)/A(x)) * (1 - x^(2*n)), due to the Jacobi triple product identity.
(4) -x*A(x)^2 = Product_{n>=1} (1 - x^(2*n)/A(x)) * (1 - x^(2*n-2)*A(x)) * (1 - x^(2*n)), due to the Jacobi triple product identity.