A357227
a(n) = coefficient of x^n, n >= 0, in A(x) such that: 1 = Sum_{n=-oo..+oo} x^n * (2*A(x) - x^n)^(n-1).
Original entry on oeis.org
1, 1, 5, 27, 156, 961, 6145, 40546, 273784, 1883468, 13153544, 93012247, 664640794, 4791939802, 34816034143, 254659426691, 1873698891024, 13858201221637, 102975937795619, 768385165594607, 5755185884844403, 43253819566052165, 326093530416255178, 2465456045342545908
Offset: 0
G.f.: A(x) = 1 + x + 5*x^2 + 27*x^3 + 156*x^4 + 961*x^5 + 6145*x^6 + 40546*x^7 + 273784*x^8 + 1883468*x^9 + 13153544*x^10 + 93012247*x^11 + 664640794*x^12 + ...
where
1 = ... + x^(-3)/(2*A(x) - x^(-3))^4 + x^(-2)/(2*A(x) - x^(-2))^3 + x^(-1)/(2*A(x) - x^(-1))^2 + 1/(2*A(x) - 1) + x + x^2*(2*A(x) - x^2) + x^3*(2*A(x) - x^3)^2 + x^4*(2*A(x) - x^4)^3 + ... + x^n*(2*A(x) - x^n)^(n-1) + ...
SPECIFIC VALUES.
A(1/9) = 1.30108724398914093656591796643458817060949...
A(1/10) = 1.22176622612326449515553495048940456186175...
-
{a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0);
A[#A] = polcoeff(-1 + sum(m=-#A, #A, x^m * (2*Ser(A) - x^m)^(m-1) ), #A-1)/2); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
-
{a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0);
A[#A] = polcoeff(-1 + sum(m=-#A, #A, x^(2*m) * (2*Ser(A) - x^m)^(m-1) )/(2*Ser(A)), #A-1)/2); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
-
{a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0);
A[#A] = polcoeff(-1 + sum(m=-#A, #A, (-1)^(m+1) * x^(m^2)/(1 - 2*Ser(A)*x^m)^(m+1) ), #A-1)/2); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
-
{a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0);
A[#A] = polcoeff(-1 + sum(m=-#A, #A, (-1)^(m+1) * x^(m*(m-1))/(1 - 2*Ser(A)*x^m)^(m+1) )/(2*Ser(A)), #A-1)/2); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
A361772
Expansion of g.f. A(x) satisfying 1 = Sum_{n=-oo..+oo} x^n * (2*A(x) - (-x)^n)^(2*n-1).
Original entry on oeis.org
1, 1, 8, 61, 600, 6072, 65804, 733435, 8415694, 98529785, 1173278329, 14162417506, 172914841649, 2131621288494, 26495818020038, 331706510158239, 4178800564364333, 52935845003315662, 673878770026778330, 8616336680850069832, 110606714769468383785, 1424933340070339610543
Offset: 0
G.f.: A(x) = 1 + x + 8*x^2 + 61*x^3 + 600*x^4 + 6072*x^5 + 65804*x^6 + 733435*x^7 + 8415694*x^8 + 98529785*x^9 + 1173278329*x^10 + ...
-
{a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0);
A[#A] = polcoeff( sum(m=-#A, #A, x^m * (2*Ser(A) - (-x)^m)^(2*m-1) ), #A-1)/2); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
A361773
Expansion of g.f. A(x) satisfying 1 = Sum_{n=-oo..+oo} x^n * (2*A(x) - (-x)^n)^(3*n-1).
Original entry on oeis.org
1, 2, 34, 677, 15660, 393790, 10433402, 286990626, 8117763488, 234635708480, 6899771599141, 205768408153474, 6208628685564955, 189188990142419693, 5813805339043713267, 179968235623379467274, 5606627898452185950618, 175650401043239524832783, 5530500462355496324862920
Offset: 0
G.f.: A(x) = 1 + 2*x + 34*x^2 + 677*x^3 + 15660*x^4 + 393790*x^5 + 10433402*x^6 + 286990626*x^7 + 8117763488*x^8 + 234635708480*x^9 + 6899771599141*x^10 + ...
-
{a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0);
A[#A] = polcoeff( sum(m=-#A, #A, x^m * (2*Ser(A) - (-x)^m)^(3*m-1) ), #A-1)/2); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
A361771
Expansion of g.f. A(x) satisfying 1 = Sum_{n=-oo..+oo} x^n * (2*A(x) - (-x)^n)^(n-1).
Original entry on oeis.org
1, 1, 1, 7, 28, 89, 421, 1898, 7912, 36412, 169960, 779139, 3668210, 17486938, 83333003, 400956919, 1943928504, 9455346485, 46225027071, 227066384875, 1119123274755, 5534782142253, 27463607765186, 136652474592260, 681728348606011, 3409395265172439, 17088672210734316
Offset: 0
G.f.: A(x) = 1 + x + x^2 + 7*x^3 + 28*x^4 + 89*x^5 + 421*x^6 + 1898*x^7 + 7912*x^8 + 36412*x^9 + 169960*x^10 + 779139*x^11 + 3668210*x^12 + ...
-
{a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0);
A[#A] = polcoeff( sum(m=-#A, #A, x^m * (2*Ser(A) - (-x)^m)^(m-1) ), #A-1)/2); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
A361774
Expansion of g.f. A(x) satisfying 1 = Sum_{n=-oo..+oo} x^n * (2*A(x) - (-x)^n)^(4*n-1).
Original entry on oeis.org
1, 4, 150, 7003, 380817, 22517717, 1405927141, 91215539609, 6089092570148, 415519886498886, 28855638743197866, 2032628861705203315, 144884697917577076857, 10430845410431559928714, 757390467820895322043476, 55401570124877193188443429, 4078685155312165112343519832
Offset: 0
G.f.: A(x) = 1 + 4*x + 150*x^2 + 7003*x^3 + 380817*x^4 + 22517717*x^5 + 1405927141*x^6 + 91215539609*x^7 + 6089092570148*x^8 + ...
-
{a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0);
A[#A] = polcoeff( sum(m=-#A, #A, x^m * (2*Ser(A) - (-x)^m)^(4*m-1) ), #A-1)/2); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
A363140
Expansion of g.f. A(x) satisfying 2 = Sum_{n=-oo..+oo} (-1)^n * x^n * (A(x) + x^(2*n))^(2*n+1).
Original entry on oeis.org
1, 2, 5, 20, 86, 396, 1887, 9277, 46748, 240189, 1253474, 6625814, 35401302, 190878795, 1037296173, 5675580349, 31240459117, 172871809365, 961124621229, 5366264076784, 30076030970681, 169149177823245, 954301797559301, 5399467787889483, 30631118027908197
Offset: 0
G.f.: A(x) = 1 + 2*x + 5*x^2 + 20*x^3 + 86*x^4 + 396*x^5 + 1887*x^6 + 9277*x^7 + 46748*x^8 + 240189*x^9 + 1253474*x^10 + ...
-
{a(n) = my(A=[1]); for(i=1,n, A = concat(A,0);
A[#A] = polcoeff(2 - sum(m=-#A, #A, (-1)^m * x^m * (Ser(A) + x^(2*m))^(2*m+1) ),#A-1));A[n+1]}
for(n=0,30,print1(a(n),", "))
Showing 1-6 of 6 results.
Comments