A357260 a(n) is the number of 2 X 2 Euclid-reduced matrices having coprime elements and determinant n.
1, 2, 3, 4, 5, 8, 7, 9, 9, 14, 11, 16, 13, 20, 18, 19, 17, 28, 19, 26, 26, 32, 23, 36, 25, 38, 31, 38, 29, 54, 31, 41, 42, 50, 38, 56, 37, 56, 50, 56, 41, 76, 43, 62, 58, 68, 47, 78, 49, 78, 66, 74, 53, 92, 62, 76, 74, 86, 59, 114, 61, 92, 78, 85, 74, 124, 67, 98, 90, 118
Offset: 1
Keywords
Links
- Roland Bacher, Euclid meets Popeye: The Euclidean Algorithm for 2X2 matrices, arXiv:2209.09529 [math.NT], 2022.
Crossrefs
Cf. A357259.
Programs
-
Mathematica
f[n_] := DivisorSum[n, # + 1 - n/# &, #^2 >= n &]; a[n_] := DivisorSum[n, MoebiusMu[Sqrt[#]] * f[n/#] &, IntegerQ[Sqrt[#]] &]; Array[a, 100] (* Amiram Eldar, Sep 21 2022 *)
-
PARI
f(n) = sumdiv(n, d, if (d^2 >= n, d + 1 -n/d)); \\ A357259 a(n) = sumdiv(n, d, if (issquare(d), moebius(sqrtint(d))*f(n/d)));
Formula
a(n) = Sum_{d^2|n} moebius(d)*A357259(n/d^2).
Comments