A357263 Numbers k such that the sum of the distinct digits of k is equal to the product of the prime divisors of k.
1, 2, 3, 5, 6, 7, 24, 343, 375, 392, 640, 686, 2401, 3375, 4802, 4913, 6400, 13122, 14336, 14641, 30375, 33614, 64000, 468750, 640000, 1703936, 2725888, 2839714, 2883584, 4687500, 5537792, 6298560, 6400000, 7864320, 13668750, 14172488, 19267584, 21807104, 26040609, 28629151
Offset: 1
Examples
375 = 3*5^3. 3+7+5 = 3*5. Thus 375 is a term.
Programs
-
Mathematica
Select[Range[10^6], Plus @@ Union[IntegerDigits[#]] == Times @@ FactorInteger[#][[;;,1]] &] (* Amiram Eldar, Sep 21 2022 *)
-
PARI
isok(k) = vecsum(Set(digits(k))) == vecprod(factor(k)[, 1]);
-
Python
from math import prod from sympy import primefactors def ok(n): return n and sum(map(int, set(str(n)))) == prod(primefactors(n)) print([k for k in range(10**5) if ok(k)]) # Michael S. Branicky, Sep 22 2022
Extensions
More terms from Michel Marcus, Sep 21 2022
Comments