cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A357263 Numbers k such that the sum of the distinct digits of k is equal to the product of the prime divisors of k.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 24, 343, 375, 392, 640, 686, 2401, 3375, 4802, 4913, 6400, 13122, 14336, 14641, 30375, 33614, 64000, 468750, 640000, 1703936, 2725888, 2839714, 2883584, 4687500, 5537792, 6298560, 6400000, 7864320, 13668750, 14172488, 19267584, 21807104, 26040609, 28629151
Offset: 1

Views

Author

Alexandru Petrescu, Sep 21 2022

Keywords

Comments

64*10^k is a term of the sequence for every positive integer k.

Examples

			375 = 3*5^3. 3+7+5 = 3*5. Thus 375 is a term.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10^6], Plus @@ Union[IntegerDigits[#]] == Times @@ FactorInteger[#][[;;,1]] &] (* Amiram Eldar, Sep 21 2022 *)
  • PARI
    isok(k) = vecsum(Set(digits(k))) == vecprod(factor(k)[, 1]);
    
  • Python
    from math import prod
    from sympy import primefactors
    def ok(n): return n and sum(map(int, set(str(n)))) == prod(primefactors(n))
    print([k for k in range(10**5) if ok(k)]) # Michael S. Branicky, Sep 22 2022

Extensions

More terms from Michel Marcus, Sep 21 2022