cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A357293 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = Sum_{j=0..n} Stirling2(n,k*j).

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 0, 2, 0, 1, 0, 1, 5, 0, 1, 0, 0, 3, 15, 0, 1, 0, 0, 1, 8, 52, 0, 1, 0, 0, 0, 6, 25, 203, 0, 1, 0, 0, 0, 1, 25, 97, 877, 0, 1, 0, 0, 0, 0, 10, 91, 434, 4140, 0, 1, 0, 0, 0, 0, 1, 65, 322, 2095, 21147, 0, 1, 0, 0, 0, 0, 0, 15, 350, 1232, 10707, 115975, 0, 1, 0, 0, 0, 0, 0, 1, 140, 1702, 5672, 58194, 678570, 0
Offset: 0

Views

Author

Seiichi Manyama, Oct 17 2022

Keywords

Examples

			Square array begins:
  1,   1,  1,  1,  1,  1, 1, ...
  0,   1,  0,  0,  0,  0, 0, ...
  0,   2,  1,  0,  0,  0, 0, ...
  0,   5,  3,  1,  0,  0, 0, ...
  0,  15,  8,  6,  1,  0, 0, ...
  0,  52, 25, 25, 10,  1, 0, ...
  0, 203, 97, 91, 65, 15, 1, ...
		

Crossrefs

Columns k=0-3 give: A000007, A000110, A024430, A143815.
Cf. A357119.

Programs

  • PARI
    T(n, k) = sum(j=0, n, stirling(n, k*j, 2));
    
  • PARI
    T(n, k) = if(k==0, 0^n, n!*polcoef(sum(j=0, n\k, (exp(x+x*O(x^n))-1)^(k*j)/(k*j)!), n));
    
  • PARI
    Bell_poly(n, x) = exp(-x)*suminf(k=0, k^n*x^k/k!);
    T(n, k) = if(k==0, 0^n, my(w=exp(2*Pi*I/k)); round(sum(j=0, k-1, Bell_poly(n, w^j)))/k);

Formula

For k > 0, e.g.f. of column k: Sum_{j>=0} (exp(x)-1)^(k*j)/(k*j)!.
For k > 0, T(n,k) = ( Sum_{j=0..k-1} Bell_n(w^j) )/k, where Bell_n(x) is n-th Bell polynomial and w = exp(2*Pi*i/k).