cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A357324 Numbers k such that there is a unique m for which the sum of the aliquot unitary divisors of m (A034460) is k.

Original entry on oeis.org

6, 9, 11, 13, 128, 150, 164, 222, 224, 332, 338, 390, 404, 416, 420, 458, 510, 548, 558, 570, 576, 582, 584, 598, 660, 668, 750, 788, 800, 810, 818, 822, 836, 852, 878, 884, 926, 930, 1046, 1118, 1200, 1202, 1230, 1244, 1250, 1260, 1284, 1298, 1304, 1382, 1422, 1472, 1478
Offset: 1

Views

Author

Amiram Eldar, Sep 24 2022

Keywords

Comments

Numbers k such that A324938(k) = 1.

Crossrefs

The unitary version of A057709.

Programs

  • Mathematica
    us[1] = 0; us[n_] := Times @@ (1 + Power @@@ FactorInteger[n]) - n; m = 1500; v = Table[0, {m}]; Do[u = us[k]; If[2 <= u <= m, v[[u]]++], {k, 1, m^2}]; Position[v, 1] // Flatten

Formula

a(n) = A034460(A357325(n)).

A361420 a(n) is the unique number m such that A126168(m) = A361419(n).

Original entry on oeis.org

1, 6, 8, 15, 21, 52, 58, 82, 106, 118, 268, 158, 356, 1264, 1296, 388, 202, 214, 226, 130, 508, 524, 1936, 160, 138, 298, 692, 2608, 358, 3088, 288, 446, 454, 466, 932, 478, 432, 348, 1792, 538, 562, 578, 586, 12032, 1268, 748, 20736, 1348, 694, 706, 26368, 544, 758
Offset: 1

Views

Author

Amiram Eldar, Mar 11 2023

Keywords

Crossrefs

Similar sequences: A357313, A357325.

Programs

  • Mathematica
    f[p_, e_] := Module[{b = IntegerDigits[e, 2]}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; is[1] = 0; is[n_] := Times @@ f @@@ FactorInteger[n] - n;
    seq[max_] := Module[{v = s = Table[0, {max}], i}, Do[i = is[k] + 1; If[i <= max, v[[i]]++; s[[i]] = k], {k, 1, max^2}]; s[[Position[v, 1] // Flatten]]];
    seq[500]
  • PARI
    s(n) = {my(f = factor(n), b); prod(i=1, #f~, b = binary(f[i, 2]); prod(k=1, #b, if(b[k], f[i, 1]^(2^(#b-k)) + 1, 1))) - n; }
    lista(nmax) = {my(v = w = vector(nmax+1)); for(k=1, nmax^2, i = s(k) + 1; if(i <= nmax+1, v[i] += 1; w[i] = k)); for(i = 1, nmax+1, if(v[i] == 1, print1(w[i], ", "))); }

Formula

A126168(a(n)) = A361419(n).

A372743 a(n) is the unique number m such that A336563(m) = A372742(n).

Original entry on oeis.org

4, 9, 25, 49, 121, 27, 169, 289, 24, 361, 529, 54, 841, 961, 36, 1369, 1681, 1849, 2209, 2809, 343, 3481, 3721, 4489, 5041, 5329, 6241, 100, 6889, 189, 7921, 72, 9409, 112, 10201, 10609, 11449, 11881, 686, 12769, 16129, 17161, 225, 18769, 19321, 196, 22201, 160
Offset: 1

Views

Author

Amiram Eldar, May 12 2024

Keywords

Comments

Includes all the squares of primes (A001248).

Crossrefs

A001248 is a subsequence.
Similar sequences: A357313, A357325, A361420.

Programs

  • Mathematica
    f[p_, e_] := (p^(e + 1) - 1)/(p - 1) - 1; s[1] = 0; s[n_] := Times @@ f @@@ FactorInteger[n] - n; seq[max_] := Module[{v = w = Table[0, {max}], i}, Do[i = s[k]; If[1 <= i <= max, v[[i]]++; w[[i]] = k], {k, 1, max^2}]; w[[Position[v, 1] // Flatten]]]; seq[200]
  • PARI
    s(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i, 1]^(f[i, 2] + 1) - 1)/(f[i, 1] -1) - 1) - n;}
    lista(nmax) = {my(v = w = vector(nmax), i); for(k = 1, nmax^2, i = s(k); if(i > 0 && i <= nmax, v[i]++; w[i] = k)); for(k = 1, nmax, if(v[k] == 1, print1(w[k], ", ")));}

Formula

A336563(a(n)) = A372742(n).
Showing 1-3 of 3 results.