cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A357325 a(n) is the unique number m such that A034460(m) = A357324(n).

Original entry on oeis.org

6, 15, 21, 35, 250, 138, 4192, 10048, 6112, 748, 20736, 5968, 802, 12256, 41728, 3592, 498, 53632, 8656, 80128, 2284, 2308, 36352, 2372, 10288, 5272, 11728, 84352, 1594, 630, 6472, 48448, 6616, 50368, 1426, 1762, 102016, 172288, 32416, 8872, 2328, 9544, 19408
Offset: 1

Views

Author

Amiram Eldar, Sep 24 2022

Keywords

Crossrefs

The unitary version of A357313.

Programs

  • Mathematica
    us[1] = 0; us[n_] := Times @@ (1 + Power @@@ FactorInteger[n]) - n; m = 1500; v = s = Table[0, {m}]; Do[u = us[k]; If[2 <= u <= m, v[[u]]++; s[[u]] = k], {k, 1, m^2}]; s[[Position[v, 1] // Flatten]]

Formula

A034460(a(n)) = A357324(n).

A372742 Numbers k such that there is a unique number m for which the sum of the aliquot coreful divisors of m (A336563) is k.

Original entry on oeis.org

2, 3, 5, 7, 11, 12, 13, 17, 18, 19, 23, 24, 29, 31, 36, 37, 41, 43, 47, 53, 56, 59, 61, 67, 71, 73, 79, 80, 83, 84, 89, 96, 97, 98, 101, 103, 107, 109, 112, 113, 127, 131, 135, 137, 139, 140, 149, 150, 151, 156, 157, 163, 167, 173, 179, 181, 191, 193, 197, 198
Offset: 1

Views

Author

Amiram Eldar, May 12 2024

Keywords

Comments

A coreful divisor d of n is a divisor that is divisible by every prime that divides n (see also A307958).
Numbers k such that A372739(k) = 1.
The corresponding values of m are in A372743.
Includes all prime numbers.

Crossrefs

A000040 is a subsequence.
Similar sequences: A057709, A357324, A361419.

Programs

  • Mathematica
    f[p_, e_] := (p^(e + 1) - 1)/(p - 1) - 1; s[1] = 0; s[n_] := Times @@ f @@@ FactorInteger[n] - n; seq[max_] := Module[{v = Table[0, {max}], i}, Do[i = s[k]; If[1 <= i <= max, v[[i]]++], {k, 1, max^2}]; Position[v, 1] // Flatten]; seq[200]
  • PARI
    s(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i, 1]^(f[i, 2] + 1) - 1)/(f[i, 1] -1) - 1) - n;}
    lista(nmax) = {my(v = vector(nmax), i); for(k=1, nmax^2, i = s(k); if(i > 0 && i <= nmax, v[i]++)); for(k = 1, nmax, if(v[k] == 1, print1(k, ", ")));}

Formula

a(n) = A336563(A372743(n)).

A361419 Numbers k such that there is a unique number m for which the sum of the aliquot infinitary divisors of m (A126168) is k.

Original entry on oeis.org

0, 6, 7, 9, 11, 18, 32, 44, 56, 62, 72, 82, 94, 96, 98, 102, 104, 110, 116, 122, 132, 136, 138, 146, 150, 152, 178, 180, 182, 210, 222, 226, 230, 236, 238, 242, 248, 252, 264, 272, 284, 292, 296, 304, 322, 332, 338, 342, 350, 356, 360, 374, 382, 390, 392, 404
Offset: 1

Views

Author

Amiram Eldar, Mar 11 2023

Keywords

Comments

Numbers k such that A331973(k) = 1.

Crossrefs

Similar sequences: A057709, A357324.

Programs

  • Mathematica
    f[p_, e_] := Module[{b = IntegerDigits[e, 2]}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; is[1] = 0; is[n_] := Times @@ f @@@ FactorInteger[n] - n;
    seq[max_] := Module[{v = Table[0, {max}], i}, Do[i = is[k] + 1; If[i <= max, v[[i]]++], {k, 1, max^2}]; -1 + Position[v, 1] // Flatten];
    seq[500]
  • PARI
    s(n) = {my(f = factor(n), b); prod(i=1, #f~, b = binary(f[i, 2]); prod(k=1, #b, if(b[k], f[i, 1]^(2^(#b-k)) + 1, 1))) - n; }
    lista(nmax) = {my(v = vector(nmax+1)); for(k=1, nmax^2, i = s(k) + 1; if(i <= nmax+1, v[i] += 1)); for(i = 1, nmax+1, if(v[i] == 1, print1(i-1, ", "))); }

Formula

a(n) = A126168(A361420(n)).

A358199 a(n) is the least integer whose sum of the i-th powers of the proper divisors is a prime for 1 <= i <= n, or -1 if no such number exists.

Original entry on oeis.org

4, 4, 981, 8829, 8829, 122029105, 2282761881
Offset: 1

Views

Author

Jean-Marc Rebert, Nov 02 2022

Keywords

Examples

			4 is a term since the strict divisors of 4 are {1, 2}, 1^1 + 2^1 = 3 and 1^2 + 2^2 = 5 are prime and no number < 4 has this property.
		

Crossrefs

Subsequence of A037020.

Programs

  • PARI
    card(n)=my(c=1,s=0);s=sigma(n)-n;while(isprime(s),c++;s=sigma(n,c)-n^c);c--
    a(n)=my(x=0);for(k=1,+oo,x=card(k);if(x>=n,return(k)))
    
  • Python
    from itertools import count
    from math import prod
    from sympy import isprime, factorint
    def A358199(n):
        for m in count(2):
            f = factorint(m).items()
            if all(map(isprime,(prod((p**((e+1)*i)-1)//(p**i-1) for p,e in f) - m**i for i in range(1,n+1)))):
                return m # Chai Wah Wu, Nov 15 2022
Showing 1-4 of 4 results.