cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A361420 a(n) is the unique number m such that A126168(m) = A361419(n).

Original entry on oeis.org

1, 6, 8, 15, 21, 52, 58, 82, 106, 118, 268, 158, 356, 1264, 1296, 388, 202, 214, 226, 130, 508, 524, 1936, 160, 138, 298, 692, 2608, 358, 3088, 288, 446, 454, 466, 932, 478, 432, 348, 1792, 538, 562, 578, 586, 12032, 1268, 748, 20736, 1348, 694, 706, 26368, 544, 758
Offset: 1

Views

Author

Amiram Eldar, Mar 11 2023

Keywords

Crossrefs

Similar sequences: A357313, A357325.

Programs

  • Mathematica
    f[p_, e_] := Module[{b = IntegerDigits[e, 2]}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; is[1] = 0; is[n_] := Times @@ f @@@ FactorInteger[n] - n;
    seq[max_] := Module[{v = s = Table[0, {max}], i}, Do[i = is[k] + 1; If[i <= max, v[[i]]++; s[[i]] = k], {k, 1, max^2}]; s[[Position[v, 1] // Flatten]]];
    seq[500]
  • PARI
    s(n) = {my(f = factor(n), b); prod(i=1, #f~, b = binary(f[i, 2]); prod(k=1, #b, if(b[k], f[i, 1]^(2^(#b-k)) + 1, 1))) - n; }
    lista(nmax) = {my(v = w = vector(nmax+1)); for(k=1, nmax^2, i = s(k) + 1; if(i <= nmax+1, v[i] += 1; w[i] = k)); for(i = 1, nmax+1, if(v[i] == 1, print1(w[i], ", "))); }

Formula

A126168(a(n)) = A361419(n).

A372742 Numbers k such that there is a unique number m for which the sum of the aliquot coreful divisors of m (A336563) is k.

Original entry on oeis.org

2, 3, 5, 7, 11, 12, 13, 17, 18, 19, 23, 24, 29, 31, 36, 37, 41, 43, 47, 53, 56, 59, 61, 67, 71, 73, 79, 80, 83, 84, 89, 96, 97, 98, 101, 103, 107, 109, 112, 113, 127, 131, 135, 137, 139, 140, 149, 150, 151, 156, 157, 163, 167, 173, 179, 181, 191, 193, 197, 198
Offset: 1

Views

Author

Amiram Eldar, May 12 2024

Keywords

Comments

A coreful divisor d of n is a divisor that is divisible by every prime that divides n (see also A307958).
Numbers k such that A372739(k) = 1.
The corresponding values of m are in A372743.
Includes all prime numbers.

Crossrefs

A000040 is a subsequence.
Similar sequences: A057709, A357324, A361419.

Programs

  • Mathematica
    f[p_, e_] := (p^(e + 1) - 1)/(p - 1) - 1; s[1] = 0; s[n_] := Times @@ f @@@ FactorInteger[n] - n; seq[max_] := Module[{v = Table[0, {max}], i}, Do[i = s[k]; If[1 <= i <= max, v[[i]]++], {k, 1, max^2}]; Position[v, 1] // Flatten]; seq[200]
  • PARI
    s(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i, 1]^(f[i, 2] + 1) - 1)/(f[i, 1] -1) - 1) - n;}
    lista(nmax) = {my(v = vector(nmax), i); for(k=1, nmax^2, i = s(k); if(i > 0 && i <= nmax, v[i]++)); for(k = 1, nmax, if(v[k] == 1, print1(k, ", ")));}

Formula

a(n) = A336563(A372743(n)).
Showing 1-2 of 2 results.