cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A372743 a(n) is the unique number m such that A336563(m) = A372742(n).

Original entry on oeis.org

4, 9, 25, 49, 121, 27, 169, 289, 24, 361, 529, 54, 841, 961, 36, 1369, 1681, 1849, 2209, 2809, 343, 3481, 3721, 4489, 5041, 5329, 6241, 100, 6889, 189, 7921, 72, 9409, 112, 10201, 10609, 11449, 11881, 686, 12769, 16129, 17161, 225, 18769, 19321, 196, 22201, 160
Offset: 1

Views

Author

Amiram Eldar, May 12 2024

Keywords

Comments

Includes all the squares of primes (A001248).

Crossrefs

A001248 is a subsequence.
Similar sequences: A357313, A357325, A361420.

Programs

  • Mathematica
    f[p_, e_] := (p^(e + 1) - 1)/(p - 1) - 1; s[1] = 0; s[n_] := Times @@ f @@@ FactorInteger[n] - n; seq[max_] := Module[{v = w = Table[0, {max}], i}, Do[i = s[k]; If[1 <= i <= max, v[[i]]++; w[[i]] = k], {k, 1, max^2}]; w[[Position[v, 1] // Flatten]]]; seq[200]
  • PARI
    s(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i, 1]^(f[i, 2] + 1) - 1)/(f[i, 1] -1) - 1) - n;}
    lista(nmax) = {my(v = w = vector(nmax), i); for(k = 1, nmax^2, i = s(k); if(i > 0 && i <= nmax, v[i]++; w[i] = k)); for(k = 1, nmax, if(v[k] == 1, print1(w[k], ", ")));}

Formula

A336563(a(n)) = A372742(n).

A372739 a(n) is the number of possible values of k such that the sum of aliquot coreful divisors of k (A336563) is n.

Original entry on oeis.org

0, 1, 1, 0, 1, 3, 1, 0, 0, 2, 1, 1, 1, 3, 2, 0, 1, 1, 1, 0, 2, 2, 1, 1, 0, 2, 0, 0, 1, 6, 1, 0, 2, 2, 2, 1, 1, 2, 3, 0, 1, 5, 1, 0, 0, 2, 1, 0, 0, 0, 2, 0, 1, 0, 2, 1, 2, 2, 1, 2, 1, 3, 0, 0, 2, 4, 1, 0, 2, 4, 1, 0, 1, 2, 0, 0, 2, 5, 1, 1, 0, 2, 1, 1, 2, 2, 2
Offset: 1

Views

Author

Amiram Eldar, May 12 2024

Keywords

Comments

A coreful divisor d of n is a divisor that is divisible by every prime that divides n (see also A307958).

Examples

			a(2) = 1 since there is 1 possible value of k, k = 4, such that A336563(k) = 2.
a(6) = 3 since there are 3 possible values of k, k = 8, 12 and 18, such that A336563(k) = 6.
		

Crossrefs

Similar sequences: A048138, A324938, A331971, A331973.

Programs

  • Mathematica
    f[p_, e_] := (p^(e + 1) - 1)/(p - 1) - 1; s[1] = 0; s[n_] := Times @@ f @@@ FactorInteger[n] - n; seq[max_] := Module[{v = Table[0, {max}], i}, Do[i = s[k]; If[0 < i <= max, v[[i]]++], {k, 1, max^2}]; v]; seq[100]
  • PARI
    s(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i, 1]^(f[i, 2] + 1) - 1)/(f[i, 1] - 1) - 1) - n;}
    lista(nmax) = {my(v = vector(nmax), i); for(k = 1, nmax^2, i = s(k); if(i > 0 && i <= nmax, v[i]++)); v;}

Formula

a(n) = 0 if and only if n is in A372740.
a(n) = 1 if and only if n is in A372742.

A373743 Expansion of e.g.f. exp(x^3/6 * (1 + x)^2).

Original entry on oeis.org

1, 0, 0, 1, 8, 20, 10, 280, 3360, 20440, 67200, 462000, 7407400, 73673600, 482081600, 3364761400, 47311264000, 657536880000, 6586994814400, 58707179731200, 740032028736000, 11832726841936000, 161121297104768000, 1857897194273120000, 23875495204536976000
Offset: 0

Views

Author

Seiichi Manyama, Jun 16 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n\3, binomial(2*k,n-3*k)/(6^k*k!));

Formula

a(n) = n! * Sum_{k=0..floor(n/3)} binomial(2*k,n-3*k)/(6^k * k!).
a(n) = (n-1)*(n-2)/6 * (3*a(n-3) + 8*(n-3)*a(n-4) + 5*(n-3)*(n-4)*a(n-5)).
Showing 1-3 of 3 results.