A357347
E.g.f. satisfies A(x) = (exp(x * exp(A(x))) - 1) * exp(2 * A(x)).
Original entry on oeis.org
0, 1, 7, 103, 2385, 75756, 3064239, 150689953, 8729691693, 582299930167, 43956280309659, 3704637865439380, 344825037782332457, 35131983926187957173, 3888817094785288023367, 464724955485177444101895, 59631976064836824117227621, 8177487264101392841050876136
Offset: 0
-
a(n) = sum(k=1, n, (n+2*k)^(k-1)*stirling(n, k, 2));
A357348
E.g.f. satisfies A(x) = (exp(x * exp(A(x))) - 1) * exp(3 * A(x)).
Original entry on oeis.org
0, 1, 9, 172, 5181, 214196, 11279542, 722242795, 54482959375, 4732518179422, 465226448603533, 51061919634063284, 6189640391474229790, 821277806639279795053, 118394082630978607655201, 18426248367244130561233924, 3079294928622816257125500821
Offset: 0
-
a(n) = sum(k=1, n, (n+3*k)^(k-1)*stirling(n, k, 2));
A357424
E.g.f. satisfies A(x) * exp(A(x)) = exp(x * exp(A(x))) - 1.
Original entry on oeis.org
0, 1, 1, 4, 21, 156, 1470, 16843, 227367, 3533974, 62163477, 1220852524, 26480355110, 628693388909, 16216901961481, 451609382251836, 13504072800481613, 431544662700594212, 14677503631085378170, 529370720888418692643, 20180856622352239827687
Offset: 0
-
Join[{0,1},Table[Sum[(n-k)^(k-1) * StirlingS2[n,k], {k,1,n}], {n,2,20}]] (* Vaclav Kotesovec, Nov 14 2022 *)
-
a(n) = sum(k=1, n, (n-k)^(k-1)*stirling(n, k, 2));
Showing 1-3 of 3 results.