A357407 a(n) = coefficient of x^n, n >= 0, in A(x) = exp( Sum_{n>=1} A183204(n)*x^n/n ), where A183204 equals the central terms of triangle A181544.
1, 4, 32, 360, 4964, 78064, 1344020, 24708928, 477282794, 9580852360, 198322047840, 4209371498256, 91221481924426, 2011834246746792, 45039165331725264, 1021419638492387856, 23426910170090512779, 542666070296546760492, 12681393784980089971368
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + 4*x + 32*x^2 + 360*x^3 + 4964*x^4 + 78064*x^5 + 1344020*x^6 + 24708928*x^7 + 477282794*x^8 + 9580852360*x^9 + 198322047840*x^10 + ... where log(A(x)) = 4*x + 48*x^2/2 + 760*x^3/3 + 13840*x^4/4 + 273504*x^5/5 + 5703096*x^6/6 + 123519792*x^7/7 + 2751843600*x^8/8 + 62659854400*x^9/9 + ... + A183204(n)*x^n/n + ...
Links
- Paul D. Hanna, Table of n, a(n) for n = 0..500
Programs
Formula
a(n) ~ c * 3^(3*n) / n^(5/2), where c = 0.289447274610263555814082139782101227837126089347468995035938970190651243... - Vaclav Kotesovec, Mar 14 2023
Comments