cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A357407 a(n) = coefficient of x^n, n >= 0, in A(x) = exp( Sum_{n>=1} A183204(n)*x^n/n ), where A183204 equals the central terms of triangle A181544.

Original entry on oeis.org

1, 4, 32, 360, 4964, 78064, 1344020, 24708928, 477282794, 9580852360, 198322047840, 4209371498256, 91221481924426, 2011834246746792, 45039165331725264, 1021419638492387856, 23426910170090512779, 542666070296546760492, 12681393784980089971368
Offset: 0

Views

Author

Paul D. Hanna, Oct 19 2022

Keywords

Comments

A183204(n) = Sum_{k=floor(n/2)..n} C(n,k)^2 * C(2*k,n) * C(n+k,k).
A183204(n) equals the coefficient of x^n in (1-x)^(3*n+1) * Sum_{k>=0} binomial(n+k-1,k)^3 * x^k, which is the central term of row n of triangle A181544.

Examples

			G.f.: A(x) = 1 + 4*x + 32*x^2 + 360*x^3 + 4964*x^4 + 78064*x^5 + 1344020*x^6 + 24708928*x^7 + 477282794*x^8 + 9580852360*x^9 + 198322047840*x^10 + ...
where
log(A(x)) = 4*x + 48*x^2/2 + 760*x^3/3 + 13840*x^4/4 + 273504*x^5/5 + 5703096*x^6/6 + 123519792*x^7/7 + 2751843600*x^8/8 + 62659854400*x^9/9 + ... + A183204(n)*x^n/n + ...
		

Crossrefs

Programs

  • PARI
    {A183204(n) = sum(k=n\2,n, binomial(n,k)^2 * binomial(2*k,n) * binomial(n+k,k) )}
    {a(n) = polcoeff( exp( sum(m=1,n, A183204(m)*x^m/m ) + x*O(x^n) ),n)}
    for(n=0,20,print1(a(n),", "))

Formula

a(n) ~ c * 3^(3*n) / n^(5/2), where c = 0.289447274610263555814082139782101227837126089347468995035938970190651243... - Vaclav Kotesovec, Mar 14 2023