A357430 a(n) is the least integer > 1 such that its digit representation in base n is equal to the digit representation in base n of the initial terms of its set of divisors in increasing order.
6, 48, 6, 182, 8, 66, 10, 102, 12, 1586, 14, 198, 16, 258, 18, 345, 20, 402, 22, 486, 24, 306484, 26, 678, 28, 786, 30, 26102, 32, 1026, 34, 1158, 36, 1335, 38, 1446, 40, 1602, 42, 204741669824, 44, 1938, 46, 2118, 48, 2355, 50, 2502, 52, 2706, 54, 8199524, 56
Offset: 2
Links
- Rémy Sigrist, Table of n, a(n) for n = 2..148
Programs
-
PARI
isok(k, b) = my(s=[]); fordiv(k, d, s=concat(s, digits(d, b)); if (fromdigits(s, b)==k, return(1)); if (fromdigits(s, b)> k, return(0))); a(n) = my(k=2); while(! isok(k, n), k++); k;
-
Python
from sympy import divisors from sympy.ntheory import digits from itertools import count, islice def ok(n, b): target, s = digits(n, b)[1:], [] if target[0] != 1: return False for d in divisors(n): s += digits(d, b)[1:] if len(s) >= len(target): return s == target elif not target[:len(s)] == s: return False def a(n): return next(i for d in count(1) for i in range(n**d, 2*n**d) if ok(i, n)) print([a(n) for n in range(2, 41)]) # Michael S. Branicky, Oct 05 2022
Formula
a(2*n) = 2*n + 2 for any n > 1. - Rémy Sigrist, Sep 29 2022
Extensions
More terms from Rémy Sigrist, Sep 29 2022